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Abstract - Reduced fluid-structure interaction models have received a considerable attention in recent years being the key component 

of hemodynamic modeling. A variety of models applying to specific physiological components such as arterial, venous and 

cerebrospinal fluid (CSF) circulatory systems have been developed based on different approaches.  The purpose of this paper is to 

apply the general approach based on Hamilton’s variational principle to create a model for a viscous Newtonian fluid - structure 

interaction (FSI) in a compliant bifurcated network. This approach provides the background for a correct formulation of reduced FSI 

models with an account for arbitrary nonlinear visco-elastic properties of compliant boundaries. The correct boundary conditions are 

specified at junctions, including matching points in a combined 3D/1D approach. The hyperbolic properties of derived mathematical 

model are analyzed and used, constructing the monotone finite volume numerical scheme, second-order accuracy in time and space. 

The computational algorithm is validated by comparison of numerical solutions with the exact manufactured solutions for an isolated 

compliant segment and a bifurcated structure.  The accuracy of applied TVD (total variation diminishing) and Lax-Wendroff methods 

are analyzed by comparison of numerical results to the available analytical smooth and discontinuous solutions. 

 

Keywords: Hamilton’s variational principle, reduced fluid-structure interaction (FSI), bifurcated arterial networks, 

multiscale 3D/1D approach, total variation diminishing method (TVD), Lax-Wendroff method, manufactured test, break-

down solution 

 

Nomenclature 
PWV: Pulse wave velocity (m/s) 

FSI : Fluid structure interaction 

A : Cross sectional area (m2) 

V : Velocity Vector(m/s) 

u : Displacement vector (m) 

p : pressure (Pa) 

𝜌 : Density of incompressible fluid  (kg/m3) 

U: Internal Energy (J) 

R, r : Internal wall radii in a zero stress and loaded conditions respectively (m) 

η : Ratio of the wall deflection to R 

c : Moens–Korteweg speed of Propagation (m/s) 

σ, 𝜏 : Axial normal and shear viscous stress (Pa) 

𝜈 : Kinematic viscosity (m2/s) 

 
 
1. Introduction 

An extensive work has been done for developing different models, applied to specific components of hemodynamic 

pulsating flow, such as arterial, venous and CSF circulations.  A historical review of arterial fluid mechanics models was 

presented by Parker – 2009 [1]. Detailed derivation of simplified reduced FSI models for a linear elastic arterial system 

with account of visco-elasticity and inertia of the wall can be found in Formaggia et al. – 2009 [2]. Physical nonlinearity of 

thin and thick walls coupled with large deformations have been introduced in FSI dynamics by Liberson et al. – 2016 [3] 

and Lillie et al. – 2016 [4]. An analytical solution for the pulse wave velocity (PWV) of a nonlinear FSI model was 
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presented in Liberson et al. – 2014 [5]. The variational approach, yielding governing equations of physical phenomena, 

serves as an indispensable tool in case, when the interaction of the system components are non-trivial, containing, as an 

example, strong nonlinearities, kinematic constraints, high derivatives. The monumental book of Berdichevsky – 2010 [6] 

presents a variety of variational principles applied separately to fluids and solids. Kock and Olson - 1991 [7] developed a 

variational approach for FSI system, restricting analysis by a linear elastic thin-walled cylinder and an inviscid, irrotational 

and isentropic fluid flow. Lagrangian multipliers are used to reinforce continuity equation and boundary conditions. 

Multiple references can be found in this paper relating to applications of the variational approach to the analysis of small 

vibrations of elastic bodies in a potential fluid.   

We demonstrate the effectiveness of Hamiltonian variational principle in analyzing FSI without any limitations on 

dissipative fluid dynamics and physical properties of an adjacent flow path wall. We do not use the Lagrangian multiplier, 

accounting for the continuity equation explicitly, which simplifies the entire procedure. Internal boundary conditions are 

specified at junctions, including matching points in a combined 3D/1D approach, following from the Euler-Lagrange 

conditions.  

Numerical effectiveness in a simulation of a pulsating flow is characterized by its ability to track a propagating wave 

for a few periods without suffering from numerical dissipation (errors in amplitude) and numerical dispersion (artificial 

oscillations). The most popular numerical methods in this area are the Lax-Wendroff finite volume method, its Taylor-

Galerkin finite element counterpart, and a discontinuous Galerkin spectral finite element method [2]. We demonstrate 

superiority in accuracy, for the second order approximation, TVD method [8-10], which could be essential when 

simulating a model with discontinuity in the load or material properties 

 

2. The Variational Principle for Fluid–Structure Interaction Problems 
 Hamilton’s variational principle is enunciated as a universal principle of nature unifying mechanical, thermodynamic, 

electromagnetic and other fields in a single least action functional, subject to extremization for a true process.  According 

to the mentioned principle, the variation of the action functional 𝛿𝐼 being applied to FSI problem can be determined as: 

 

𝛿𝐼 = 𝛿𝐼𝑓𝑙𝑢𝑖𝑑 + 𝛿𝐼𝑠𝑜𝑙𝑖𝑑 = ∫ [ ∮ 𝜌𝑓𝛿𝐿𝑓𝑑∀ +

 

∀𝑓𝑙𝑢𝑖𝑑(𝑡)

∮ 𝛿𝐿𝑑∀

 

∀𝑠𝑜𝑙𝑖𝑑(𝑡)

] 𝑑𝑡 = 0

𝑡2

𝑡1

 (1) 

 

Here 𝛿𝐼𝑓𝑙𝑢𝑖𝑑 , 𝛿𝐼𝑠𝑜𝑙𝑖𝑑 are variations of action components across fluid and solid volumes ∀𝑓𝑙𝑢𝑖𝑑(𝑡), ∀𝑠𝑜𝑙𝑖𝑑(𝑡); t – time, 

𝜌𝑓-density of the fluid, 𝐿𝑓 , 𝐿 - the Lagrangian density functions for fluid and solids respectfully. 

 

2.1. Fluid Domain 
As it is mentioned by Berdichevsky - 2010 [6], variation of the Lagrange function density in Eulerian coordinates can 

be written as follows:  

 

 

𝛿𝐿𝑓 = 𝛿 (
𝑽2

2
− 𝑈(𝜌𝑓 , 𝑆, 𝛁𝐮)) + 𝑇𝛿𝑆 (2) 

 

Where 𝑽 – is a velocity vector, 𝑈 – is an internal energy as a function of density, entropy 𝑆, and a distortion tensor 𝛁𝐮 

(gradient of a displacement vector 𝐮), T – temperature. Velocity, density and the displacement vector are not subject to 

independent variations. To avoid the use of Lagrangian multipliers extract variation of density directly from the mass 

conservation law:  

 

 
𝛿(𝜌𝑓𝑑∀) = 0  →    𝛿𝜌𝑓 = −𝜌𝑓𝜵 ∙ 𝒖 (3) 
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Presenting variation of a velocity as a substantial derivative of a variation of a displacement vector, arrive at:  

 

𝛿𝑽 =
𝐷𝛿𝒖

𝐷𝑡
=

𝜕𝛿𝒖

𝜕𝑡
+ 𝑽 ∙ 𝛁𝛿𝒖 (4) 

 

Now we have reduced the equation (2) to the only independent variables - displacement and entropy. Substituting (3) 

and (4) into equation (2) gives: 

 

𝛿𝐼𝑓𝑙𝑢𝑖𝑑 = ∫ [ ∮ (𝜌𝑓𝑽.  (
𝜕𝛿𝒖

𝜕𝑡
+ 𝑽 ∙  𝛁𝛿𝒖) + 𝑝 𝛁 ∙ 𝛿𝒖 −

𝜌𝑓𝜕𝑈

𝜕𝜌𝑓

𝛿𝜌𝑓 − 𝜌𝑓 (
𝜕𝑈

𝜕𝑠
− 𝑇) 𝛿𝑠 − 𝝈: 𝛿𝛁𝒖)

 

∀𝑓𝑙𝑢𝑖𝑑(𝑡)

𝑑∀] 𝑑𝑡

𝑡2

𝑡1

 (5) 

 

In which, according to Maxwell’s thermodynamic identity, pressure  𝑝 = 𝜌𝑓
2 𝜕𝑈

𝜕𝜌
 , and the deviatoric stress tensor is 

introduced as 𝝈 = 𝜌𝑓
𝜕𝑈

𝜕𝛁𝒖
 .         

Considering 2D axisymmetric flow in a long compliant tube, according to the long wave approximation we neglect 

variability of a radial velocity component and a pressure in a radial direction. The equation (5) in this case is transformed 

to the following form: 

 

𝛿𝐼𝑓𝑙𝑢𝑖𝑑 = ∫ ∫ ∫ [𝜌𝑓𝑉 (
𝜕𝛿𝑢

𝜕𝑡
+ 𝑉

𝜕𝛿𝑢

𝜕𝑥
) + 𝑃

𝜕𝛿𝑢

𝜕𝑥
− 𝜎

𝜕𝛿𝑢

𝜕𝑥
− 𝜏

𝜕𝛿𝑢

𝜕𝑟
]

𝑅(𝑥,𝑡)

0

 

𝑥

𝑟𝑑𝑟𝑑𝑥𝑑𝑡

𝑡2

𝑡1

 (6) 

 

Here 𝑉 – is an axial velocity, 𝑢 – is an axial component of displacement, 𝜎, 𝜏 – axial normal and shear viscous stress 

components, 𝑅(𝑥, 𝑡)- internal radius of a tube as a function of axial coordinate and time. The reduced models are based on 

assumptions regarding radial profiles, i.e. 

 

𝑉(𝑥, 𝑟, 𝑡) = 𝜑(𝑟)𝑉(𝑥, 𝑡);   𝑢(𝑥, 𝑟, 𝑡) = 𝑓(𝑟)𝑢(𝑥, 𝑡) (7) 

 

With the aim of application to the incompressible flow, density is assumed constant. Integrating the functional (7) over 

the cross section with the following integration by parts, arrive at the reduced momentum equation 

 

𝜕𝑉

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑎1

𝑝

𝜌
+ 𝑎2𝑉

2
) =

1

𝑎0𝜌
[∫ 𝑟𝑓(𝑟)  𝜎(𝑥, 𝑟, 𝑡)𝑑𝑟 − 𝑅 𝜏(𝑥, 𝑅, 𝑡)] (8) 

 

Where the coefficients are: 

 

𝑎0 = ∫ 𝑟𝑓(𝑟) 𝑑𝑟;   𝑎1 = ∫ 𝑟𝜑(𝑟)𝑓(𝑟) 𝑑𝑟;   𝑎2 =
1

𝑎0
∫ 𝑟𝜑(𝑟)2𝑓(𝑟) 𝑑𝑟 (9) 

 

In case of Newtonian fluid ( 𝜎 = 2𝜌𝜈
𝜕𝑉

𝜕𝑥
 , 𝜏 = 𝜌𝜈

𝜕𝑉

𝜕𝑟
 ), generalized Hagen-Poiseuille profile 𝜑(𝑟) =

𝛾+2

𝛾
[1 − (

𝑟

𝑅
)

𝛾
]  

and a constant profile for the function distribution in radial direction,  𝑓 (𝑟) = 1, equation (8) takes the form presented by 

San and Staples – 2012 [12].  

 

𝜕𝑉

𝜕𝑡
+

𝜕

𝜕𝑥
(𝛼

𝑉
2

2
+

𝑃

𝜌
) = 𝜈 (

𝜕2𝑉

𝜕𝑥2
− 2(𝛾 + 2)

𝑉

𝑅2) (10) 

 



ENFHT 103-4 

Besides equation (8), Hamilton’s equation in a form of  𝛿𝐼𝑓𝑙𝑢𝑖𝑑 = 0  yields natural boundary conditions. In case of a 

multiscale model, matching section of a coupled 3D and 1D require continuity following from natural boundary conditions 

 

𝑎1

𝑝

𝜌
+ 𝑎2𝑉

2
= ∫ 𝑟𝑓(𝑟) (

𝑝

𝜌
+ 𝑉2)  𝑑𝑟 (11) 

 

It should be noted that we neglect the effect of dissipation on boundary conditions. 

 

2.2. Solid Domain 
Consider a circular thin-wall cylinder relating to the polar system of coordinates.  Let 𝑅 be the radius of the wall under 

the load, 𝑅0 – radius in a load free state, ℎ - the wall thickness, 𝜆𝜃 = 𝑅/𝑅0 – circumferential stretch ratio, 𝜂 = (𝜆𝜃 − 1) – 

nondimensionalized wall normal displacement. Introducing wall kinetic energy 𝐾, elastic energy 𝑈𝑒𝑙 and a dissipative 

energy 𝑈𝑑 and work of external load 𝑊𝑝 the Hamiltonian functional relating to the solid domain can be presented as 

 

𝛿𝐼𝑠𝑜𝑙𝑖𝑑 =   ∬(𝛿𝐾 − (𝛿𝑈𝑒𝑙 + 𝛿𝑈𝑑 − 𝛿𝑊𝑝))𝑑𝑥𝑑𝑡 (12) 

 

Kinetic energy per unit length is defined by the normal velocity of the moving wall 𝑅0
𝒅𝜼

𝒅𝒕
 

 

𝐾 =
1

2
𝜌ℎ𝑅0

2(1 + 𝜂) (
𝜕𝜂

𝜕𝑡
)

𝟐

 (13) 

 

Internal elastic energy is composed of hyperelastic exponential strain energy (Fung, 1990) and an energy, accumulated 

by a longitudinal pre-stress force N per unit area 

 

𝑈𝑒𝑙 =
𝑐

2
(𝑒𝑄 − 1) + 𝑁 (√1 + 𝑅0

2 (
𝜕𝜂

𝜕𝑥
)

2

− 1) (14) 

 

Where 𝑄 = 𝑎11𝐸𝜃
2 + 2𝑎12𝐸𝜃𝐸𝑧 + 𝑎22𝐸𝑧

2, and 𝑐, 𝑎11, 𝑎12, 𝑎22 are material constants from Fung et al. anisotropic 

model [11]. Assuming the wall model is a system of independent nonlinearly elastic rings, and simplifying the equation 

(14) by leaving the principle quadratic terms only (the forth power for 𝜂 and quadratic terms for the slope), arrive at 

 

𝑈𝑒𝑙 =
𝑐𝑎11

8
(𝜂4 + 4𝜂3 + 4𝜂2) +

𝑁

2
𝑅0

2 (
𝜕𝜂

𝜕𝑥
)

2

 (15) 

 

Elementary work produced by the viscous component of circumferential stress relating to the Voight type of material 

and external pressure load are presented as 

 

𝛿𝑈𝑑 − 𝛿𝑊𝑝 = (
𝜇ℎ

𝑅0

𝜕𝜂

𝜕𝑡
− 𝑝) 𝑅0𝛿𝜂 (16) 

 

Substituting (13)-(16) into equation (12), and equating to zero, obtain the equation of motion of an axisymmetric 

cylinder in the explicit form with respect to pressure  

 

𝑝 = 𝜌ℎ𝑅0

𝜕2𝜂

𝜕𝑡2
+

𝜇ℎ

𝑅0

𝜕𝜂

𝜕𝑡
+ 𝑐𝑎11 (

3

2
𝜂2 + 𝜂) − 𝑁𝑅0

2 𝜕2𝜂

𝜕𝑥2

 

 (17) 
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Momentum equation (8), equation of a boundary wall motion (17) and an averaged over the cross-section continuity 

equation (3)  

 
𝜕𝐴

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑉𝐴) = 0;     A=(𝜂 + 1)2 (18) 

 

Create a closed-form reduced mathematical model for fluid-structure interaction in a compliant channel. 

 

3. Numerical Simulation 
The most popular numerical methods in computational hemodynamics are the Lax-Wendroff finite volume method, its 

Taylor-Galerkin finite element counterpart, and a discontinuous Galerkin spectral finite element method [2]. In this paper, 

we apply the second-order accuracy in time and space with TVD method, which demonstrates its superiority when 

simulating a discontinuity in a load or in material properties. The details of TVD methods applied to the system of 

hyperbolic equations could be found in [8].     

      

3.1. Break-down Solution 
To compare the behavior of numerical solutions of Lax-Wendroff and TVD methods, Fig. 1 and Fig. 2 show evolution 

of the initial discontinuity of pressure and velocity, according to the following acoustics counterpart of equations (16)-(18) 

 
𝜕𝑝

𝜕𝑡
+ 𝜌𝑐2 𝜕𝑉

𝜕𝑥
= 0; 

𝜕𝑉

𝜕𝑡
+

1

𝜌

𝜕𝑝

𝜕𝑥
= 0; 

(19) 

 

The same values of 𝜌=0.25 
𝑘𝑔

𝑚3 , 𝑐 = 2
𝑚

𝑠
, Courant number CFL=0.5 and cell count of n=100 was used for both 

schemes.  Discontinuity is resolved perfectly by the TVD method, reproducing practically the exact solution (Fig. 1). 

Discontinuity give rise to artificial oscillations when Lax-Wendroff method is used. The Lax-Wendroff method is clearly 

dispersive, and does not perform well around discontinuities. 

 

 
Fig. 1: TVD test. Evolution of discontinuity. 
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Fig. 2: Lax-Wendroff test. Evolution of discontinuity. 

 
3.2. Single Segment Nonlinear FSI Problem Testing Case 

The nonlinear mathematical model used for this problem is based on momentum equation (10) (α=1), continuity 

equation (18) and a linear constituent equation in the form of (17), accounting for the linear viscoelastic behavior of the 

wall. We start manufacturing an explicit expression for the solution as a superposition of Fourier harmonics, satisfying the 

corresponding linear equations. Then, we substitute the solution to the equations (10), (17) and (18), evaluating the source 

terms. Given the source terms, boundary and initial conditions just obtained, we use the simulation tool to obtain a 

numerical solution and compare it to the originally assumed solution with which we started. Results, presented in Fig. 3 

prove that plots cannot distinguish between numerical and exact solution. For smooth solutions, the Lax-Wendroff 

approach and TVD solutions give practically the same answer. 

 

 
Fig. 3: FSI problem for a single segment. Velocity and pressure distributions in the center of the 1st cell, 
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middle cell and the last cell. Numerical and manufactured solutions are not distinguishable. 

3.3. Bifurcated Elements Nonlinear FSI Problem Testing Case 
Schematic of a symmetric bifurcated structure with a single parent vessel and two identical daughters (twins) is 

presented in Fig. 4. We have manufactured an explicit expression for the solution as a superposition of three Fourier 

harmonics, satisfying a priori flow and pressure continuity at the matching sections. The flow for the daughter  

 

 
Fig. 4: Schematic of bifurcated vessels. 

 

𝑄𝑑  and parent 𝑄𝑝 vessels are created such that the continuity condition at matching sections is satisfied automatically, 

𝑄𝑝(𝑥 = 𝐿3, 𝑡) = 2𝑄𝑑(𝑥 = 0, 𝑡), and 𝑥 – is the local coordinate at each vessel, varying from 0 to 𝐿1 in daughter segment, 

and from 0 to 𝐿3 in a parent vessel. 

 

𝑸𝒅 = 𝑞1 cos(2𝜋𝑡) cos (2𝜋
𝑥

𝐿1
) + 𝑞2 cos(4𝜋𝑡) cos (4𝜋

𝑥

𝐿1
) + 𝑞3 cos(6𝜋𝑡) cos (6𝜋

𝑥

𝐿1
) 

(20) 

𝑸𝒑 = 2𝑞1 cos(2𝜋𝑡) cos (2𝜋
𝑥

𝐿3
) + 2𝑞2 cos(4𝜋𝑡) cos (4𝜋

𝑥

𝐿3
) + 2𝑞3 cos(6𝜋𝑡) cos (6𝜋

𝑥

𝐿3
) 

(21) 

 

The pressure distributions for the parent 𝑃𝑝(𝑥, 𝑡) and the daughter 𝑃𝑑(𝑥, 𝑡) vessels are manufactured providing 

automatically match  𝑃𝑝(𝑥 = 𝐿3, 𝑡) = 𝑃𝑑(𝑥 = 0, 𝑡) at junctions.  

 

 

𝑷𝒅 = 𝑝1 cos(2𝜋𝑡) cos (2𝜋
𝑥

𝐿1
) + 𝑝2 cos(4𝜋𝑡) cos (4𝜋

𝑥

𝐿1
) + 𝑝3 cos(6𝜋𝑡) cos (6𝜋

𝑥

𝐿1
) 

(22) 

𝑷𝒑 = 𝑝1 cos(2𝜋𝑡) (1 + sin (2𝜋
𝑥

𝐿3
)) + 𝑝2 cos(4𝜋𝑡) (1 + sin (4𝜋

𝑥

𝐿3
)) + 𝑝3 cos(6𝜋𝑡) (1 + sin (6𝜋

𝑥

𝐿3
)) 

(23) 

 

As mentioned before, we substitute the solution to the equations (10), (17) and (18), evaluating the source terms. 

Given the source terms, boundary and initial conditions just obtained, we use the simulation tool to obtain a numerical 

solution and compare it to the originally assumed solution with which we started. Results, presented in Fig. 5 prove that 

plots cannot distinguish between numerical and exact solution. For smooth solutions, the Lax-Wendroff approach and 

TVD solutions give practically the same answer. 
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Fig. 5: FSI problem for bifurcated segments. Pressure, flow and velocity distributions in a parent and daughter 

vessels for 𝑡=0.05s and 𝑡=0.15s.  Numerical and manufactured solutions are not distinguishable. 

 

4. Conclusions 
A general approach to derive the fluid-structure interaction problem have been applied based on Hamilton’s 

variational principle. Fluid is assumed viscous, and a boundary wall – nonlinear viscoelastic.  Internal boundary conditions 

at the matching sections of a multiscale 3D-1D approach are derived. Numerical results based on a TVD approach 

compared to the solutions provided by the Lax-Wendroff.  It is proved that the Lax-Wendroff method is clearly dispersive, 

providing artificially oscillations simulating physical problems with discontinuity. These oscillations are not present in 

TVD method, making it the optimum choice in solving 1D FSI problem. Derived internal boundary conditions enable the 

coupling of 1D FSI model to a local 3D FSI model of the arteries.  
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