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Abstract– An effective nonlinear second-order PDE image denoising and restoration model is described 

in this paper. The proposed anisotropic diffusion-based filtering scheme is based on some novel versions 

of the edge-stopping function and the conductance parameter. A consistent numerical approximation 

scheme is constructed for this continuous model. Our PDE-based smoothing technique provides an 

efficient noise removal while preserving the edges and other image features. It outperforms both the 

conventional filters and also many PDE-based denoising approaches, as it results from our successfully 

experiments and method comparison. 
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1. Introduction 
 During the past 25 years, the differential models have been widely used in several traditionally 

engineering areas, such as image processing and analysis, and computer vision. The partial differential 

equations (PDEs) have been successfully utilized for solving many image processing and computer vision 

problems. In recent years, many image processing and analysis techniques using variational and PDE-

based algorithms have been developed, because of the modeling flexibility and some advantages of the 

numerical implementation of the PDEs (Guichard et al., 2001). 

 Feature-preserving image restoration represents still a focus in the image processing domain, 

remaining a serious challenge for researchers. The conventional 2D denoising techniques, like average, 

median and 2D Gaussian filter may reduce the noise, but also have the disadvantage of blurring the edges 

and have no localization property (Jain, 1989). For this reason, a lot of edge-preserving approaches based 

on PDEs have been introduced in the last decades (Barbu, 2013, Guichard et al., 2001). 

 Many nonlinear second-order diffusion-based noise removal schemes have been proposed since the 

influential framework of P. Perona and J. Malik (1987), representing an anisotropic diffusion model for 

image denoising. Since it is common to derive a PDE-based model from a variational problem, numerous 

variational restoration techniques have been also constructed in the last three decades (Chan et al., 2003). 

 The most influential variational image smoothing technique is that developed by Rudin, Osher and 

Fetami (1992). These variational and second-order PDE models overcome the blurring effect but often 

generate the staircase effect (Buades et al., 2006). 

 In this paper we propose a novel image restoration approach using a nonlinear second-order 

anisotropic diffusion based algorithm that alleviate the staircase effect and outperform the state-of-the-art 

PDE techniques (Weickert, 1998, Ning and Ke, 2012). The proposed PDE models are described in the 

next section, while the corresponding numerical discretization algorithm is presented in the second. Our 

image restoration experiments and method comparison are discussed in the fourth section. This article 

finalizes with conclusions and a list of references.  
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2. A Nonlinear Anisotropic Diffusion Model 
 We consider a novel nonlinear anisotropic diffusion-based model that provides an efficient noise 

removal while preserving successfully the image boundaries (Ning and Ke, 2012). Our PDE-based 

denoising technique is based on the next second-order parabolic equation: 
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 Where 
0u  

is the degraded image, its domain 2R  and  0,1 . We construct the next 

diffusivity (edge-stopping) function     ,0,0:u , for this restoration scheme: 
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 Where the conductance diffusivity depends on the state of the evolving image at time t. We consider 

a statistics-based automatic computation of this parameter, using the image noise estimation at each time, 

as follows:  
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 Where  2,3 ,  0,1 ,   represents the average operator, ord (u) returns the order of u in 

the evolving sequence. 

 The proposed diffusivity function u
 
is properly selected, satisfying the conditions required by an 

edge-stopping function (Perona and Malik, 1987). So, it is always positive and monotonically decreasing. 

Since 
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 Then one can prove the existence and uniqueness of a weak solution in some certain cases. Our PDE 

model has solution if the function )(ss u  is monotonically increasing. In order for this to happen, its 

derivative must be positive:  
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verified condition, therefore our PDE model represents a forward parabolic equation that is stable and 

quite likely to have a solution. A numerical discretization solution for this PDE is described in the 

following section. 

  

3. Numerical Approximation Scheme 
 We consider a robust numerical discretization of the proposed continuous PDE model. Thus, the 

discretization of the equation (1) is based on a 4-NN discretization of the Laplacian operator, u  

(Weickert, 1998). So, the following numerical approximation is performed on our model: 
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 Where  )1,(),1,(),,1(),,1(  yxyxyxyxN p
 represents the set of pixels representing 

the 4-neighborhood of the pixel described as a pair of coordinates p = [x, y],  1 ,0 , and gradient 

magnitude in a particular direction at iteration n is computed as: 

 

),(),()(, npunqunu qp                                                                (5) 

 

 This iterative restoration algorithm applies the operation (4) on the evolving image for each n from 0 

to N, where N is the number of iterations providing an optimal denoising. Our restoration scheme is stable 

and consistent to model given by (1) - (3). It converges fast to the solution of this PDE model, achieving 

the optimally filtered image 
1Nu

 
from the noisy image 

0

0 uu   
in a quite low number of iterations, so N 

takes a rather small value.  

4. Experiments and Method Comparison 
 We successfully performed numerous image denoising tests by applying the proposed anisotropic 

diffusion-based approach. Our restoration scheme was tested on hundreds of images corrupted with 

various levels of Gaussian noise. It reduced considerably the noise and image blurring, preserved the 

image details and overcame the staircase effect (Buades et al., 2006). 

 The following parameters of the PDE model provided the optimal filtering results: 

14.  ,030 2.3, 0.3,  ,4.1  N. The performance of our restoration scheme was 

assessed by using the PSNR (Peak Signal to Noise Ratio) measure. Method comparison results are 

registered in Table 1 and displayed in Fig. 1. Our PDE-based filter provides higher PSNR (Peak Signal to 

Noise Ratio) values (which mean better restoration results) than both Perona-Malik models, TV 

Denoising and classic [3 x 3] filters, like Average, Gaussian or Median (Jain, 1989).   

 

 
 

Fig. 1. Denoising results obtained by various schemes. 

 

Table 1. Comparison of the PSNR values for several image restoration methods 

 

Model Ours P-M 1 P-M 2      TV Average Gaussian Median 

PSNR 27.93(dB) 26.23(dB) 26.91(dB) 27.03(dB) 26.19(dB) 22.37(dB) 24.53(dB) 
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 The performance of our restoration technique was assessed by using not only this PSNR measure, but 

also Norm of the Error (NE) Image and Structural Similarity Image Metric (SSIM). All these measures 

prove that our proposed method provides the best values.  

 

5. Conclusions 
 We have described a PDE-based denoising technique based on nonlinear anisotropic diffusion in this 

article. This approach provides an efficient feature-preserving image noise removal and overcomes 

unintended effects, like blurring or staircasing. 

 The proposed models for the edge-stopping function and its conductance parameter represent the 

main contributions of this work. The mathematical investigation of the edge-stopping function selection 

and the well-posedness of this PDE model, as well as the proposed numerical approximation scheme 

represent also important contributions of this work. 

 The performed experiments and method comparison results, prove the effectiveness of the developed 

technique, which outperforms numerous PDE models and conventional image filters. Our future research 

in this PDE-based image processing domain will focus on developing novel effective restoration models 

based on higher order PDEs (for example, fourth-order PDE schemes). 
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