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Abstract– This paper proposes a scan-matching simultaneous localisation and mapping (SLAM)-based Iterative 

Closest Point algorithm using laser scan information and images in an indoor environment. The ICP algorithm, 

which is one of the scan-matching methods calculates the closest position iteratively by adjusting the motion vector 

and rotation matrix of the model. The matching process requires a great deal of time, in accordance with the size of 

the point cloud model and repetitive execution. The proposed method uses part of the feature model and performs 

the matching by setting up the adjusting range of the motion vector and rotation matrix through the maximum 

velocity of a mobile robot. It then estimates the pose of the mobile robot using the relationship between the models. 

In order to evaluate the efficiency of the proposed algorithm, experiments driving the mobile robot were executed, 

such as estimating the pose of the mobile robot and building a map. 
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1. Introduction 
 Many researchers have studied simultaneous localisation and mapping (SLAM), which is the process 

by which a mobile robot localises itself and builds a map of an unknown area. There are two typical 

sensors used to collect information about the environment. One is a range sensor like a sonar or laser 

(Endres et al., 2012; Hahnel et al., 2003). Such a range sensor can quickly obtain range data about the 

environment. The other type is a vision sensor (Endres et al., 2012; Klein and Murray, 2007; Steux and El 

Hamzaoui, 2010). A vision sensor can obtain much more information and exhibits a good price–

performance ratio. 

 SLAM techniques are based on sensors, which obtain various forms of data. Klein and Murray (2007) 

used a single camera to estimate the camera pose. The algorithm set the key frame and implemented 

bundle adjustment (BA) to localise the camera. However, there is a problem with this method in that a 

large map will increase the processing time. Steux and El Hamzaoui (2010) used a line laser sensor to 

scan the impact points. Their algorithm was rapid and simple, but its accuracy was somewhat low. Endres 

et al. (2012) used a Kinect sensor which could obtain depth and RGB data. Their system required more 

time and techniques for dealing with vision and range data, but was able to obtain more information on 

localisation than the other approaches. 

 Hahnel et al. (2003) proposed the SLAM algorithm to integrate a laser sensor and FastSLAM 

(Montemerlo et al., 2002). They used a scan-matching method involving Rao-Blackwellised particle filter 

(RBPF) particles. In scan-matching approaches, there are different methods used for two-dimensional (2D) 

and 3D scan matching. These methods can estimate a mobile robot’s pose using the correlation between 
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past and present scan models. This paper is restricted to the 2D scan-matching approach for the 

implementation of the real-time system.  

 In this paper, we propose a scan-matching SLAM using the Iterative Closest Point (ICP) algorithm. 

Our proposed method sets the motion vector to reduce repetitive matching and uses part of the model. We 

assume that the mobile robot moves on flat ground in an indoor environment, and there is no horizontal 

movement of the mobile robot. 

 In chapter 2, we explain the proposed algorithm. Chapter 3 gives the test result, and chapter 4 

provides the conclusion. 

 

2. The Proposed Method 
 
2. 1. ICP Modelling 
 For the ICP model, this paper implements a robust feature model by fusing edge information and 

range data. To generate the edge, it is necessary to set the region of interest (ROI) where the laser is 

projected onto image. The edge information is extracted from the ROI and strong vertical components are 

selected through a filter. The filter creates a histogram by allocating a bin through detecting the edge 

component of the neighbouring eight directions and selecting the edge component which accrues many 

bins in the 90° and 270° directions. The ICP model consists of the range data corresponding to the 

selected edge and the edge information, as a feature. These features indicate the start and end position 

between the objects scanned. Figure 1 shows the composition of the ICP model through the filter. 

 

 
 

Fig. 1. The ICP modelling is used by a filter which makes histograms to find vertical edges and range data. The 

strongest value of the vertical edge and range data are fused, generating the ICP model. 
 

 If the filter detects several edge pixels, it searches in a direction which assigns more bins. These 

directions are the new starting point for performing the search again, and this is carried out until the edge 

pixels are no longer detected. The filter gives more weighting to the histogram, which has more bins at 90° 

and 270° amongst the obtained histograms, and generates the cumulative edge histogram. The process of 

creating the cumulative edge histogram is the same as that illustrated in Figure 2, and can be expressed as 

shown in (1). 

 

𝐻 = ∑ 𝑤𝑖ℎ𝑖
𝑘
𝑖=1                    (1) 

 

 Where 𝐻 is the accumulated weighting edge histogram, 𝑘 is the number of histograms and ℎ𝑖 is the 

detected histogram. The weight 𝑤𝑖 is calculated by the ratio of the number of total bins in histogram and 

the number of assigned bins at 90° and 270°. Thus, these accumulated edge histograms and the 

corresponding range data generate the ICP model 𝑀 = {𝑚1, ⋯ ,𝑚𝑛} by fusing. 
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Fig. 2. Red points are detected by the edge histogram using the filter. The histograms are accumulated by (1). 

 

2. 2. The ICP Algorithm 
 The ICP algorithm calculates the difference of the Euclidean distance between the two models by 

adjusting the motion vector and rotation matrix, and calculates the correlation between the models by 

selecting the lowest value. The proposed algorithm uses the following methods to reduce the repetitive 

execution of the algorithm: 

1. Calculate the maximum movement of the mobile robot and the rotation per frame; 

2. Set the range of the motion vector and rotation matrix; 

3. Perform matching between the partial model from the previous frame and the model from the 

current one;  

4. Iterate Step 3 within the set range and calculate difference of the Euclidean distance between the 

models; and 

5. Select the smallest value and calculate the correlation between the models. 

  

 The maximum velocity of the mobile robot per frame is calculated to set the range of the motion 

vector and rotation matrix. We calculated the velocity using the moving distance and rotational angle 

through the encoder of the mobile robot, and set the range of the repetitive matching process. The moving 

distance and rotation angle had a very small value. The model for the matching used the frontal range of 

50° (101 ≤ n ≤ 300) from the previous frame (t-1), and the whole part (1 ≤ n ≤ 400) from the current 

frame (t). Fig 3.a and Fig 3.b show the relation between the set range and models. 

 

 
 

Fig. 3. The relationship between the models and the threshold. (a) Part of the model in the past frame. (b) The 

present model and threshold when the robot moves D and rotates Φ. The past model can be found in a search range. 

(c) The previous scan point is (x', y'), while (x, y) is the same point scanned at present; 𝜃 and 𝜃′ represent the angle 

between the robot and the point; and l and l' denote the distance. (c) Show the correlation of the same point between 

the past and present frame when the robot moves D and rotates ∅. 
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 Fig 3.c shows the relationship between the mobile robot and the model. The previous model, 

𝑀𝑡−1 = {𝑚′101,⋯ ,𝑚′300}, consists of the features 𝑚′𝑖 = {𝑥′𝑖, 𝑦′𝑖}. Each feature has 𝑥′𝑖 = 𝑙′𝑖 cos(𝜃′𝑖) 
and 𝑦′𝑖 = 𝑙′𝑖sin(𝜃′𝑖). Here 𝑙′𝑖 is the distance between the mobile robot and feature point, and 𝜃′𝑖 is the 

angle between the centre of the robot and the point. The positional relationship between the two models 

for the same point (𝑥𝑖 , 𝑦𝑖) can be written as: 

 

∆𝑥𝑖 = 𝐷𝑡/tan(𝜃′𝑖 +𝛷𝑡),                 (2) 

∆𝑦𝑖 = 𝐷𝑡.                    (3) 

 

 Here, 𝐷𝑡  and 𝛷𝑡  represent the maximum travel distance and rotation angle of the robot, and are 

adjusted for the matching. The ICP matching process between the two models through the setting range 

can be written as (4): 

 

𝑒 = ∑ ∑ 𝑀𝑡 −𝑀𝑡−1(𝛷, 𝐷)
𝐷
−𝐷

𝛷
−𝛷 .               (4) 

 

 𝑀𝑡 and 𝑀𝑡−1 are models from the current and previous frame, and e is the difference of the Euclidean 

distance between the models. The value which has the smallest Euclidean distance is selected by adjusting 

D and Φ to detect the best matching part between the previous model and the current model. Therefore, 

the pose of the robot through a relationship between the two models can be easily estimated, and the 

iteration of matching can be reduced by setting the range. 

 

3. Experimental Result 
 In order to evaluate the performance of the proposed algorithm in this paper, we conducted an 

experiment using the Tetra-DS III and mobile robot simulation, as shown in Fig. 5. To evaluate the 

proposed algorithm, we used the mobile robot simulation that can simulate the SLAM algorithms. To 

collect data, we installed Imaging Source DFK 61BUC02 and UTM-30LX-EW on the mobile robot. The 

mobile robot was a differential wheel–driven robot where the resolution of the camera was 640 x 480 

pixels and the accuracy of the laser sensor was ±30mm at 10 m. 

 

 
 

Fig. 5. (a) is the mobile robot simulation, and (b) is the Tetra-DS III platform with the camera and the HOKUYO 

UTM-30LX-EW laser sensor. 
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3. 1. The mobile robot simulation 
 The coreSLAM (Steux and El Hamzaoui, 2010) that use the 2D scan-matching method is similar to 

our proposed method. We compared the proposed algorithm with the coreSLAM algorithm (Steux and El 

Hamzaoui, 2010) using the simulator to evaluate the performance, as shown in Fig. 6 and Table. 1. We 

performed the simulation several times in various maps. We can see that the coreSLAM algorithm has big 

error when features are not detected. As compared with the result, the proposed algorithm stays consistent. 

 
Table. 1. Error denotes an average distance between the estimated position and the simulator, and frame per second 

(FPS) is an average operation time. 

 

 Proposed coreSLAM 

Error(Pixel) 0.00409 0.05522 

FPS 38.5 37 

 

 
 

Fig. 6. (a) are the maps used in the simulation, and (b) is a scene of the simulation. First picture in b shows a ground-

truth position, second picture shows an estimated position by proposed algorithm, last picture shows an estimated 

position by the coreSLAM algorithm. 

 

3. 2. Experiment with the mobile robot 
 The experiment with the mobile robot was conducted. We calculated the distance 𝐷 = 15mm and 

the angle 𝛷 = 0.2°. This resulted in an average of 40 frames per second by reducing the iterations. As 

shown in Fig. 7, we drove the robot around our laboratory, whose size was 11.4 m x 10 m. Its 

environment was surrounded with chairs and desks. This result could be used to make a 2D map. The first 

map shows the estimated result using the proposed algorithm, while the second demonstrates the result of 

the encoder value of the robot. The final map shows the trace of the robot and the map of laboratory, as 

well as a comparison between the estimated result and the encoder value. 

 

4. Conclusion 
 In this paper, we proposed a scan-matching SLAM which used the proposed ICP algorithm. We used 

a mobile robot which had a camera mounted on it and a laser sensor. 

 In order to find the robot’s pose, we calculated the correlation between the ICP models. To match the 

model consisting of range and edge information, we used the part of the previous model which could be 
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found in the present model. We set a range consisting of the velocity of mobile robot and the angle per 

frame to reduce the repetitive matching process. Finally, we were able to reduce the iterative matching 

process to estimate the robot pose and build a 2D map. The proposed algorithm was able to quickly obtain 

the robot pose and make a map. 

 

 
 

Fig. 7. (a), (c) The red point clouds and red circle are the results of estimation using the algorithm. The green dots 

show the trace result of robot pose estimation. (b), (c) The blue point clouds and blue circle indicate the results of 

the robot encoder value. The black dots show the trace using the robot encoder value  
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