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Abstract- Segmentation and tracking of objects with fast and complicated motion patterns is a difficult task in computer
vision, particularly in presence of occlusions. Motion information is a strong cue to distinguish objects from each
other in a video, the more different patterns two objects have the easier separating them will be. In situations where
different objects show similar movements, motion information is not informative enough by itself. In such cases, prior
knowledge can complement the motion information. A way of providing prior knowledge is to manually label some
trajectories. Providing enough manual labels may be straining, especially when segmentation is based on trajectories
that terminate at some point in time, requiring additional manual labeling. To decrease the need for prior knowledge,
we propose a new particle matching technique that employs multi-scale optical flow in order to re-detect particles
through the video shot. Experimental results demonstrate the reliability of our method.
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1 Introduction
Motion segmentation can be defined as grouping point trajectories over image sequences. While earlier work
focused on assigning the trajectories to subspaces, e.g. with the generalized PCA [13], subsequent work ex-
ploited sparsity [5] or non-negative matrix factorization [2]. Further works exploit temporal smoothness [10]
or depth ordering [4]. In the most recent works, [1, 3, 5], the pairwise relationships between trajectories are
aggregated and a final spectral clustering finds the association of trajectories to motion segments.

The aforementioned methods are all unsupervised. In case of fast and complicated motion patterns
unsupervised methods fail to perform reliably. Recently, we proposed a semi-supervised framework for
integrating prior knowledge into their energy-minimization based motion segmentation approach [9]. The
prior knowledge consists of a manual labeling to select a sample of each segment that represents that segment
through the optimization process. Unlike image segmentation where only one label is needed for each
segment, a cumbersome problem with trajectory segmentation is that the initially labeled trajectories might
not last for the whole shot. This happens in case of occlusions or a fast motion. So all trajectories of a
segment may end and, consequently, there is no trajectory left to represent that segment. The energy of
assigning trajectories that are initialized from that moment on to that segment is very large, while it’s smaller
for the other segments [9]. It is more probable that these trajectories would not be labeled as belonging to
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the terminated segment although it might be the right one. To overcome this problem [9] provides more
manual labeling such that every 500th frames are manually labeled. In the present paper, we tackle this
problem by equipping the method of [9] with a particle matching technique that automatically extends the
prior knowledge.

The primary motive for our work is to extract the motion data out of videos with the necessary level of
details to be used in predicting cerebral palsy (CP) in young infants. The method was used in [8] to predict
cerebral palsy, with encouraging results.

2 Basic Motion Segmentation
In this section, we summarize the motion segmentation method proposed in [9] which is the base of our
segmentation method. This method separates different objects from each other using their motion informa-
tion and tracks them through the whole video shot. To do so, the first step is to build up a dense trajectory
set tracking particles spread over the whole image. To distinguish objects, trajectories are segmented into
different groups based on similarity in their motions. The task of splitting is performed by a graph-cut op-
timization. Each vertex of the graph represents a trajectory, and vertices are connected by weighted edges
reflecting similarities between connected trajectories. This similarity is a measure of a combination of spatial
and motion distances such that the closer two trajectories are and/or the more similar patterns their motions
share, the higher their similarity will be. The output of this phase is a set of labels that assigns each trajectory
to one of the pre-defined segments.

This motion segmentation method needs prior knowledge to base the segmentation upon. This prior
knowledge is the assignments of a small subset of trajectories belonging to each segment. The true as-
signments of these trajectories are shared with the optimizer. Unlike image segmentation where the prior
knowledge lasts during the optimization problem, a cumbersome problem with trajectory segmentation is
that the initially labeled trajectories might not last for the whole shot. This happens in case of occlusions or
a fast motions. To overcome this problem, in [9] we provided more prior knowledge by manually labeling
trajectories in every 500th frames. In the following section, a new method is presented to overcome the
problem as well as fulfilling our ultimate goal which is to perform motion segmentation with as little user
interactions as possible. For simplicity we refer to our method in [9] as basic moseg and the proposed method
as improved moseg.

3 Improved Motion Segmentation
Since trajectories belonging to an object are terminated due to fast motions or occlusion, we re-detect the
object when reappearing. This is explained in Fig. 1 where a synthetic example is created to show the
problem with basic moseg as well as the procedure in improved moseg. Each row represents a trajectory over
time that starts at a frame and may end at another frame. The trajectories belong to two different segments,
the shapes show the true assignments while the colors are the decisions of the motion segmentation method.

As can be seen, as long as there exist some manually labeled trajectories representing each of the seg-
ments at a frame, both methods end up with the correct assignments in that frame. However in frame M
where the circle segment looses all of it’s manually labeled trajectories, the segmentation is still correct.
This is due to transitivity, trajectories that have common frames with trajectories that have common frames
with the manually labeled ones could still get the correct assignment. The main problem with the basic
moseg arises when not only all the manually labeled trajectories for a segment are terminated, but there is no
trajectory left which has common frames with them, such as in case of complete occlusion. This happens in
frame K where the basic moseg leads to a wrong segmentation. On the other hand, the improved moseg keeps
up with the correct segmentation because it could find a particle in frame K that matches an initially labeled
particle. In fact, its good performance is due to extending the manually labeled trajectories by finding new
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ones that match them.
Our proposed method consists of two stages: first, objects are re-detected by finding matched particles,

then new trajectories are initialized for the matched particles. In order to re-detect the objects, we obtain
optical flow fields over multiple time scales. In other words, every kth frames is compared to the manually
labeled frame and a flow field is calculated for each of them and finally matched points are found.

We use LDOF [11] to obtain the flow fields for two reasons. Firstly, it is designed for cases with large
displacement, and secondly, it provides a very dense set of trajectories. Let’s suppose that the flow field
between the labeled frame and frame k is estimated. The next step is to derive matched points between these
two frames. We initialize points in the labeled frame, and try to obtain matches for each of those points
in frame k. For reducing the cost of matching and also because of unnecessity in matching points with no
structure in their neighborhood, points are initialized in the areas with structure in their vicinity. To measure
the structure, the structure tensor for a point in the image, x, at each channel is obtained as follows,

S = G∗
[

I2
x IxIy

IxIy I2
y

]
(1)

where Ix and Iy are the image derivatives in x and y directions, respectively, and G is a Gaussian kernel
function with standard deviation σ = 2 centered on point with position x. Then, the structure tensors of
different channels are added up (here there are three channels, one for each color) to build the total structure
tensor. Finally, points which second eigenvalue of their total structure tensor are smaller than a percent of
average second eigenvalue for the whole image are removed from initialization.

The matches for initialized points are obtained by propagating each point in the labeled frame to frame k
using the relevant forward optical flow field w := (u,v)T via the following formula,

x̂k = x+w. (2)

Where x̂k is the estimated position of the match for x in frame k.
Due to occlusion and possibility of wrong motion estimation in the optical flow field, unreliable matches

must be removed. To do so, forward and backward flow fields are compared to each other. There are large
inconsistency between the forward and backward flow nearby the optical flow boundaries and occluding area
[7]. If they are not consistent for an specific point, either that point is occluded or the estimated flow field is
not reliable. In both cases the matched point is not reliable.

Let ŵ := (û, v̂)T be the backward flow field, then for a non-occluded point with wt(xt) = −ŵt(xt +
wt(xt)). But because of inaccuracy in the flow estimation, we consider a tolerance bound such that if the
difference of backward and forward flows exits this bound we ignore the match. So, as long as the following
inequality is valid, the relevant match could be valid:

|w+ ŵ|2< 0.01(|w|2+|ŵ|2)+0.5. (3)

The tolerance bound is proportional to the motion size for the subjected point, and the larger the motion, the
more error is acceptable. We also ignore matches on the motion boundaries to prevent drifting. Therefore
matches with

|∇u|2 + |∇v|2 > 0.01|w|2 +0.002 (4)

are deleted. This procedure is repeated for every kth frame from the manually labeled frame, and finally the
match set is formed as the set of all these matches.

For the second stage, that is to establish new trajectories on the matched points, we employ the same
procedure as for the initialized points on the first frame [11]. So, for each matched point on frame k a new
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Fig. 1: Segmentation for a synthetic example. A set of trajectories belonging to two segments are shown, each row
represents a trajectory over time that starts at a frame and may end at another frame. The shapes show the true
assignments while the colors are the decisions of the motion segmentation, the ideal segmentation leads to blue circles
and red squares. Those with black circle in the middle are the manually labeled trajectories. The double-sided arrow
shows the matched particles by improved moseg.

trajectory is created using the flow field of succeeding and preceding frames. Since the new trajectories are
developed on a matched point, they get the same label as their matches on the manually labeled frame. Ter-
mination of initially labeled trajectories are compensated by creating these new trajectories, so the segments
have some representative through the whole shot.

4 Experimental Results and Discussion
In all experiments, trajectories are developed as it is proposed in [11]. Two different data sets are used to
study the performance of our proposed methods on. First, as the primary motivation for starting this work
was to largely automate prediction of cerebral palsy, a set of infants’ videos are studied in more details.
Second, in order to investigate the applicability of our method, it is tested on a standard benchmark.

4.1 Performance on Videos of Infants
In experiments in this section, we used the experimental set-up of St. Olavs Hospital. During the experi-
ments, we analyzed the first 1000 frames of 10 sequences of different infants carrying out different motions.
These sequences are a magnitude longer than the Hopkins 155 [12] and the Freiburg-Berkeley [6] dataset
with an average length of 30 and 245 frames, respectively. As ground truth, we manually annotated a dense
segmentation of every 250th frame as displayed in Fig. 2. Due to occlusions, fast and complicated motion
patterns, the trajectories last just for 96.5 frames in average.

The goal of segmentation in our application is to capture the motion of six different segments representing
hands, feet, head and trunk. Fig. 3 shows the segmentation results for [1] which is an unsupervised technique.
It is not hard to discover that this method could separate only very distinct motions from each other, and most
of the trajectories are assigned to the background. Its poor performance can hardly be criticized. Fast and
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Fig. 2: Seq. 1 ground-truth segmentation for frames 1, 50, 200, 300 from left to right.

Fig. 3: Seq. 1 segmentation results of [1] for frames 1, 50, 200, 300 from left to right.

complicated motion patterns of body parts make the segmentation task challenging. Additionally, particles
on the same desired segment move quite differently and without additional knowledge, motion is not a
strong enough cue to meet the segmentation demands. This additional knowledge could be provided as a set
of prior knowledge carrying information about the correct assignment of a subset of trajectories representing
the desired segments.

We integrate the prior knowledge into our segmentation algorithm by manually labeling a small subset
of trajectories. For all experimental results in the followings, for each sequence two frames (1 and 500)
are manually labeled and fed to the basic moseg, while there is only one manually labeled frame (the first
frame) used in improved moseg. Frames 250 and 750 are considered for evaluation. 5% of the trajectories are
being priory labeled for the basic moseg, and just 2.6%, for improved moseg. Considering the segmentation
difficulty of this application, these numbers are quite small.

Because [9] is the only semi-supervised motion segmentation approach, for the sake of a more profound
comparison, we also created a naive baseline. To do so, we use the same prior knowledge as the basic
moseg and without applying any segmentation method the results in 250th and 750th frames are compared
with the ground truth. To obtain a measure of segmentation accuracy we calculate the intersection over
union (IOU). This measure is shown for four cases in Fig. 4; basic moseg with one and two priory labeled
frames, the baseline, and the improved moseg with just one priory labeled frame. Poor results of the baseline
indicates the level of segmentation complexity. The basic moseg with one labeled frame as a priory has
gained 77.62% segmentation accuracy, increasing the priory knowledge to two labeled frames boosts up the
results to 94.92%. The improved moseg outperforms the basic one by obtaining 96.34% accuracy although
it just uses only one labeled frame as prior knowledge.

For a more profound study, segmentation results of improved moseg for one of the sequences are shown
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Fig. 4: IOU for different sequences. Given are the results for the basic moseg with one manually labeled frame in
magenta, two manually labeled frames in blue, improved moseg with one labeled frame in yellow and for the baseline
in brown.

in Fig. 5 alongside with results of the baseline. It is clear that the baseline in itself performs poorly, while
our method exhibits reliable performance.

Occlusion is a longstanding problem in motion segmentation. Frame 650 of Fig. 5 shows a case of severe
occlusion where the head is occluded by both hands. As can be seen, the segmentation remains correct and
in frame 950, the new trajectories in the occluded area on the head are labeled correctly. Partial occlusion
is less of a problem for our proposed method: there are some trajectories left that can still stand in for the
terminated ones. These are joined by novel trajectories upon the reappearance of the previously occluded
region. In case of a complete occlusion, trajectories could be linked to each other by using rematching
process in improved moseg that extends the initial labels.

Fig. 5: Seq. 1 segmentation results for frames 1, 200, 650 and 950 from left to right. top row shows the results for the
baseline and bottom row is the results for the improved moseg method.

In sequence 5 the infant rolls to the right side, as a consequent many of the priory labeled trajectories
terminated and this weakens the basic moseg performance, however the improved moseg overcomes this
problem by re-detecting matched particle when the infant goes to a normal situation. This could be seen in
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Fig. 6: Segmentation results of sequence 5 in frames 1, 550 and 750. The upper row is for the basic mosec with frames
1 and 500 as prior knowledge, and the lower row for improved moseg with only frame 1 as prior knowledge.

Fig. 6 where at frame 550 during rolling to the right side, the head and the right foot are occluded and the
initially labeled trajectories for these segments are lost. Later on at frame 750 where the baby roles back
to the normal situation, we could see that the basic moseg wrongly assigns the trajectories on the head and
the left foot to the left hand and the left foot, respectively. However, the improved moseg performs a correct
segmentation by re-matching the particles.

4.2 Comparison with Standard Benchmarks
In this section we challenge our segmentation method with different subjects in order to investigate its gen-
erality. The three video sequences cats02, cats04 and ducks01 of the Freiburg-Berkeley data set [1, 6] are
considered, in which we deal with occlusion, disocclusion, camera motion, fast motion and low texture ob-
jects. As we consider the benchmark of [6], we also employ their metric. Here, we use F-measure that is a
region-based metric combining accuracy and coverage of the ground truth [6]. The F-measure between each
segmented region ci and each ground truth region gi is defined as:

Fi, j :=
2|ci∩g j|
|ci|+ |g j|

. (5)

Where |.| denotes the size of each set. We define the final metric to be the average F-measure. Fig. 7 shows
this measure as a quantitative comparison between the performance of our method, basic moseg, the baseline,
and [1]. The baseline and [1] show a poor performance. On the other hand, both of basic and improved moseg
boost the segmentation performance significantly. It should be noticed that in cats04 one of the cats has a
low texture and almost no trajectories is initialized on it, and this aggravates the quality of our methods.

5 Conclusions
In this paper we used motion information as well as prior knowledge of the objects of interest to segment
them. The prior knowledge is provided by manually labeling the initial frame, this assigns a sample of
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Fig. 7: The F-measure for basic moseg in blue, the improved moseg in green, [1] in yellow, and the baseline in brown.
The middle frame of each sequence is manually labeled and used as prior knowledge.

trajectories to each of the segments. In order to decrease the dependency of the segmentation method on the
amount of prior knowledge, a particle matching technique is proposed that uses multi-scale optical flow to re-
detect particles through time. Quantitative and qualitative experimental results showed not only the reliability
of our method in segmenting different objects, but less dependency on the amount of prior knowledge.
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