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Abstract- The paper presents new results concerning selection of optimal information fusion formula for 

ensembles of monitoring system channels. The goal of information fusion is to create an integral 

classificator designed for effective classification of targeted events, which appear in the vicinity of 

monitored object. The LPBoost (LP-β and LP-B variants), the Multiple Kernel Learning, and Weighing of 

Inversely as Lipschitz Constants (WILC) approaches were compared. The WILC is a brand new approach 

to optimal fusion of Lipschitz Classifiers Ensembles. Results of practical usage are presented.  
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1. Introduction 
 In common cases monitoring systems designed to control of super-extended objects (oil and gas 

pipelines, national borders, railways etc) operate with a stream of targeted events.  For example, in the 

case of C-OTDR (coherent optical time domain reflectometers) monitoring systems (Taylor et al., 2003), 

the targeted events stream contains all seismoacoustic events, which have occurred in the vicinity of 

monitoring object. Monitoring systems of this class are brand new monitoring systems which are the most 

promising for the control of super-extended objects. Information about targeted events is transmitted via a 

physical field as physical waves (electromagnetic, seismic acoustic, infrared, etc). Core of C-OTDR 

monitoring systems (OXY) functionality is based on the modern methods of reflectometric interferential 

spectroscopy and high vibrosensitivity of a coherent flow of infrared energy that is injected into a 

dedicated fiber optic cable through a conventional infrared laser with a wavelength of 1550.116 nm. The 

OXY-system is designed to operate in a fully autonomous mode and allows detecting and classifying 

suspicious (target) seismic acoustic activities in the area along protected objects. The detection accuracy 

of the mechanical activity is ~ 5-10 m. Walking or running man, traffic and excavation including hand 

digging are typical sources of acoustic emission (structural sound waves). Monitoring system sensors 

register those waves, transform wave’s parameters into a different format, and transmit that information 

via monitoring channels to data centers. Information about one and the same targeted event (TE) might be 

reflected in several channels simultaneously. For example, in case of OXY-system, due to the nature of 

the elastic oscillation, the wave from a point source of seismoacoustic emission (targeted events or 

signals) is usually detected simultaneously in several C-OTDR channels. At the same time, due to 

strongly anisotropic medium of the elastic vibrations propagation, the structure of the oscillations (speckle 

patterns) varies considerably between different C-OTDR channels. In each channel time-frequency 

characteristics of the speckle pattern are largely reflected a time-frequency structure of the seismoacoustic 

energy emission sources, which occur in the vicinity of the corresponding channel. The oscillation energy 

is considerably attenuated and distorted during propagation in the environment. The intensity of 

attenuation and distortion depends on the average absorption factor of the medium and on the distance 

from the oscillation point to the location of channel.  Noises in the channels are mutually independent if 

there is no signal. So, it is useful to process this information jointly. There is, however, a problem. The 
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number of monitored channels may be huge, for example, in C-OTDR monitoring systems (Timofeev et 

al., 2014) numbers of channels exceed tens of thousands. Joint processing of raw data in such systems 

leads to huge computational costs. That is why, at the first step, monitored raw data from different 

channels is processed separately. And only during the consequent steps multichannel data are processed 

jointly. Monitoring systems perform three major tasks in the following sequence: a)Task “D” (Detection) 

– detection of the TE; b) Task “E” (Estimation) – estimate of the location of the TE;  c) Task “C” 

(Classification) – classification of detected TE by means of assigning it to one of D priori given classes. 

All of those tasks are solved for each channel as a first processing step. In particular, Task “C” is solved 

using an automatic classifier, which is based on data from only one channel. The classification results are 

shifted to the next level of data processing. Multichannel data (single-channel classification results) have 

to be fused on this level. So, multichannel data fusion is a very important step in monitored data 

processing. There are number of various approaches to effective multichannel data fusion for task “C”. 

This report describes results of comparing various multichannel data fusion approaches for TE 

classification including a brand new approach which is based on weighing of inversely as Lipschitz 

Constants (WILC) and it allows us to improve the generalization ability of the classification system.  
 

2. Designations and Research objective 
 In this section we present used designations and research objectives with necessary comments.  

 

2. 1. Designations 
 Energy emission sources (EES). EES’s are targets of monitoring.  In depending from physics 

field type, EES might generates various types of energy: seismicacoustic, infrared, 

electromagnetic etc. If EES type is a targeted type, then this EES call “targeted event” (TE) for 

monitoring system. For example, in C-OTDR monitoring systems which designed to monitor of 

railways, EES “train” is TE, but EES “pedistrain” is not TE.     

 Monitoring system channels. ( )
k

Ch  is k-th channel, where a tuple ( , )
k k k

R   , here 
k

 is an 

absorption coefficient of k-th channel, 
k

R is a length of k-th channel;  channel length is a distance 

from EES to sensor of monitoring system. 

 Feature. A tuple  ,Z d  is a compact feature space where Z  is a set of feature values, d  is a 

metric of Z , data of all channels belongs to .Z  

 Training Set.   , | 1,...
T i i

Z i N Z ,  1 2
, ,...,

i i i mi
Z  z z z ,

i
  , each of ,

ki
Zz   1, ...,k m

, corresponds to ( )
k

Ch  , and to 
i

 .  

 True index of TE class. A  is a true index of the TE-class to which the samples  belong, 

thus 
*

   is an index of a target class.  

 Samples to classify. A set  is feature sample set; each of  , 1,...,
k

Z k m z

corresponds to ; in another words, we obtain the feature sample  from k-th channel 

. 

 Lipschitz Margin Classifier (LMC). Let    f | , 1, ..., ; ,
k k

k m  z  be a binary Lipschitz 

Margin classifier (Timofeev, 2012; Bousquet and Luxburg, 2004) with Lipschitz Constant (LC) 

k
L ;  f ( | ) : , \

k k
Z   z

 
(concept: one against all); so, classifier f ( | )

k
   divides the feature 

space  ,Z d  into two classes   and \ ;     f | | ,
k k k k k

f R z z  here   1

|
k k

f R z  is 

discriminate (stochastic) functions (so-called score-parameters, which shows  similarity degree 

of a sample kz   regarding to class   ; discriminant function  |
k k

f  z  explicitly dependent 

*

  
kz

 
1 2

, , ...,
m

Z  z z z

( )
k

Ch 
k

z

( )
k

Ch 
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on the index hypothesis to be tested   and implicitly on the index of the target class *
 ;

k
R  is the 

classification decision-making rule   :  |k
k k k

R Arg Max f


 


 z ; let us denote   - set of LMC

 | ,
k k

f  z   parameters, which needs to be tuned during of training process;  otherwise, set    

will be denoted as LMCP or LMCP .  

 Ensemble of LMC.  The set  ( | )Z F   {f |
k k
 z 1, ...,k m } is an ensemble of the LMC. 

 Integral Classifier.  is an integral classifier on the ensemble ( | )ZF ;

  ( | ) ,F Z


  FF R ; here the rule    :  ( | )Arg Max F Z


  


 FR  is output of integral 

classifier   ( | ) .F Z F  

 Discriminate function.  ( | )F Z F  is a discriminate function on the classifiers ensemble 

, , where , : 01
kk k

k    ; coefficients  
k

 are 

determined by various methods, which are object of our investigation. 

 

2. 2. Research Objective 

 So there exist m statistical independent monitoring channels  ( ) | 1, ...,
k

Ch k m Ch . Each of those 

channels depends of external (environmental) parameters tuple . Simply speaking, these 

channels transmit signals from EES to sensors of monitoring system. Thus signals  are 

outputs of monitoring channels . The tuple  defines the effectiveness of channel  for signal 

transmission. The signals  are contain relevant information about TE time-frequency parameters. Every 

two channels ( )
k

Ch   and ( )pCh   distort the TE time-frequency parameters by differently because of 

external parameters  and 
p

  are different. Accordingly we suppose every two different samples  kz   

and pz are statistically independent if . For each channel  are used appropriate D binary 

classifiers   ,f |
k i k
 z . Each LMC  is binary classifier, which divides the feature space 

 into two classes   and  

 So, we need to classify of the TE type using observation  of monitoring system channels . An 

obvious approach to solving this problem is to use the ensemble of LMC ( ( | )ZF ).  But the problem of 

effective multichannel data fusion arises. There are number of various approaches to multichannel data 

fusion.  

 The goal of this paper is to compare some data fusion methods effectiveness. A number of known 

approaches and one a brand new method were studied. The brand new method is based on use of 

Lipschitz constants of LMC's. 

 

3. Some Approaches to C-OTDR Multichannel Data Fusion for Multiclass 
Classification of TSEV 
 So the classification problem TE is reduced to the task of creating an effective multiclass classificator 

(MC) which is based on a LMC classifiers ensemble. We remark that an ensemble of classifiers is a set of 

classifiers whose individual decisions are combined in some way (typically by weighted or unweighted 

voting) to classify new examples (Narasimha and Devi, 2011; Barlett et al., 2004). At any rate a MC 

learning method choice is a dominant problem. Usually the problem of learning a MC from training data 

is often addressed by means of kernel method (KM) (Smola et al., 2008; Barlett et al., 2004). In this case 

each kernel corresponds to an appropriate channel of the set . For brevity we will not describe the 

: , \ZF

( | )ZF    ( | ) |
k k k

k

F Z f   F z

( , )
k k k

R  

 , 1, ...,
kk

Z k m z

Ch
k

 ( )
k

Ch 

Z

k


k p ( )
k

Ch 

i
   f |

k i k
 z

 ,Z d
i

 \
i



Z Ch

Ch
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baseline of this well-known method but we are going to pay attention to some KM modifications which 

are designed to work with LMC classifiers ensembles. 

 For the sake of simplicity, we will consider as a LMC a classic SVM (Platt et al., 1998). By 

definition a SVM discriminant function  depends on the parameters  (N is a power of 

the training set ) and . Here α is a normal vector to the hyperplane,  is the perpendicular 

distance from the hyperplane to the origin,   Thus we have , and each tuple  defines the 

hyperplane in the feature space.  

 

3. 1. Multiple Kernel Learning (MKL) 
 In contrast to baseline kernels selection (“averaging kernels” and “product kernels” [Jebara, 2004]), 

MKL kernel selection is to learn a kernel combination during the training phase of the algorithm. So, the 

MKL objective is to optimize jointly over a linear combination of kernels 

   ( ) ( )

1
, k ,i j

k

m

kk ki kjZ Z 


k z z with LMCP  , b  . Here  ( )

1 2
, , ...,

i

i i mi
Z  z z z , 

 ( )

1 2
, , ...,

j

j j mj
Z  z z z , 

1

1, 0

m

k k

k

 


  . MKL was originally introduced in (Bousquet and Luxburg, 

2004).  Let us denote       
1 2

( ) k , , k , , ..., k , , 1,... .
i i i i N

N
K Z Z Z Z Z Z Z R i N   The final decision has form  

    ,1
( )  

Tm

MKL kk kF Z Arg Max K Z b
 


 




  . The choice of parameters MKL is made by using for each 

  the following scheme: 

      , ,
, ,

1

, ,1 1 1
min  sb.t. 1, 00.5 ,+

m

k k
b

k

m N mT T

k k i k k ik i k
K C D b K Z

 
 

     
      



  
  

      

   , max 0,1D t t   ,  ,
Ti i

Z   Z .  

In other words, in MKL case we optimize jointly the convex hull of kernels. Here for each θ we have the 

same LMCP  , b
  

   for different k. 

 

3. 2. LP-Boost (LP-β) 

 So, we will consider a case when classifiers  |
k k

f  z  of ensemble  ( | )F Z F  are not trained 

jointly, but coefficients  k
  are determined jointly. Here we have a situation where LMCP tuples  are 

different for different k. This method is called the β-LP-Boost (Demiriz and Bennet, 2002), and here the 

final decision has the form 

 

   1 , ,( )  
m T

LP k kk k kF Z Arg Max K Z b
  


 


  .           (1) 

 

 The training phase comes down to an optimal choice of parameters 
k

 . This choice is performed by 

using standard optimization method (linear programming - LP) according to the following scheme: 

 

, ,
1

1
min ,

N

i

iN  
 

 

 
  

  
  
                  (2) 

 

 Under the condition 

     '', '',1 ' ''
', ', 1

k , arg max k , ,
m

k k i k k i k kk

m

k k ik
Z Z b Z Z b

 
 

     
  

       

 | ,
k k

f  z N
R 

T
Z

1
b R /b 

 , b  
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1,..., ,i N
1

 1, 0, 1,.. .
m

k k

k

k m 


    Here    - slack variables,   - regularization constant, which is 

chosen using Cross Validation (CV).  In frame of this approach not need provide the normalization of 

kernels  k
k
 . Moreover, features for which 0

k
  need not to be computed for the final decision 

function. 

 

3. 3. LP-Boost (LP-B) 

 Another version of LP approach to choice  was called B-LP-Boost (Nowozin and Gehler, 2009). 

In this case, each class has its own weight vector. So, we have (m x D) weighting matrix B. The final 

decision has the form 

 

            (3) 

 

 Choice of parameters we make in such way: 

 

                 (4) 

 

 Under the condition  

As above, here   are slack variables,  - regularization constant,  

is chosen using CV. Here we have a linear programming problem too, but this problem is more 

expensive because of dimension increasing. 
 

3. 4. MKL Weighing of Inversely as Lipschitz Constants (WILC-MKL) 
 Let us consider the brand new modification of the MKL that differ from classical MKL by method 

choice of linear combination parameters. The motivation of this approach is using some intrinsic 

properties of LMC.  The fact is that value of Lipschitz Constant significantly determines of the LMC 

properties. Simply speaking, the Lipschitz classifier decision function has to a small Lipschitz constant. 

This feature comes from well-known regularization principle, which recommends avoid using 

discriminative functions with a high variation. So, LMC’s with small LC are more preferable for 

providing of stable classification process. In other words, classifiers with small LC provide the greater 

generalization ability of classification system. In other words, classifiers with small LC provide the 

greater generalization ability of classification system: such classifiers have lower complexity to avoid 

overfitting. Hence, in formula of  LMC’s with small LC must get weight coefficients with 

bigger value. Let us call this approach to modification of MKL as Weighing of Inversely as to value of 

the Lipschitz Constant (WILC) or WILC-MKL. In frame of WILC-MKL approach to LMC-ensemble 

we have the following discriminative function. 

 

           (5) 

 
k



   
1 , ,

( )  
m T

LPB kk k k k
F Z Arg Max K Z bB



 







 

 
k



, ,
1

1
min ,

N

i

iN  

 
 

 
  

  
  


  

  

1

'', '',1

'

', ',

''

k ,

k , ,

m

k ik

m

k i k kk

k k k

k i

Z Z b

Z Z b

B

B
 



 





 





 

  




1,..., ; ' '',i N   

1

 ,m: 1, 0, 1, .. .

m

k

k

k
B k mB

 




   
 
 
 
   

 ( | )F Z F

( | )ZF

   ,1 ,
( )  .

m T

WILC k kk k
F Z Arg Max K Z b

  


  




 
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 Here , , ,  is Lipschitz Constant of 

discrimination function .  Thus, using WILC-MKL, we make attempt to improve the 

generalization ability of MKL by considering information about variation characteristics of classifiers 

discrimination functions. As it was shown in series of practical experiments, usage of WILC-MKL allows 

considerably improve the performance of LMC-ensemble in some practical cases.
  

4. Results of Practical Usage 
 All of above described methods were used for multichannel TE classification in C-OTDR system of 

railways monitoring. This system was successfully installed on the railways test area (RTA) of 

Kazakhstan Railways Company (JSC “NC “KTZ”) in September of 2014, and this system continues to 

operate. Parameters of the C-OTDR system: a) duration of the probe pulse is 50-200 ns; b) period of 

probe pulse ~ 50-300 μs; c) laser wavelength - 1550 nm.  In this case, the main problem is to fusion of 

multichannel data to classify the seismoacoustic TE with maximum accuracy. As was said above, for each 

C-OTDR channel  are used appropriate D binary classifiers . Each LMC 

 is binary classifier, which divides the feature space  into two classes   and . 

Each LMC  was trained independently, and each LMC uses the same set of features in the space

. The  is the ordinary GMM-vector space (Gentle and Blimes, 1998). We describe the 

procedure for calculation of the GMM-vectors very briefly. On feature extraction phase for each speckle 

pattern obtained in the probing period T for each of the channel are built Linear-Frequency Spaced 

Filterbank Cepstrum Coefficients (LFCC). In our case these features are based on 10 linear filter-banks 

(from 0.1 to 500 Hz) derived cepstra. Thus, 10 static and 10 first-order delta coefficients were used, 

giving the feature order m = 20. Further, approximation of the probability distribution function of the 

feature vectors (LFCC) by semi-parametric multivariate probability distribution model, so-called 

Gaussian Mixture Models (GMM), was carried. Presently, the GMM is one of the principal methods of 

modeling broadband acoustic emission sources (including TE) for their robust identification. The GMM 

of TE feature vectors distribution is a weighted sum of J components densities [Gentle and Blimes, 1998] 

and given by the equation  where x is a random m-vector,  
1
, ...

J

s s sJ
w w R w , 

    
1

( ) , ... ,
J

s s sJ
x B x B x R B         

1
/ 2 1/ 2 1

,

1
2 exp

2
,

m T

si si si si si
s i

B x x x  



      

 
 
 

  , , | 1,
s si si si

w i J    . In general, diagonal covariance matrices  are used to limit the model size. 

The model parameters  characterize a TE in the form of a probabilistic density function. During 

training, those parameters are determined by the well-known expectation maximization (EM) algorithm 

(Gentle and Blimes, 1998). In the described experiments value J was equal to 1024. Thus, for 

identification of TE class, each TE is modelled by a GMM-vector and is referred to as his model 

parameters  . The classic SVM with Bhattacharyya-kernel (Timofeev and Egorov, 2014) was used 

as the LMC.  

 Priori defined target classes of TE, which collectively makes up a finite set . For example, in case 

of railways monitoring the array  consists of the following TE classes: "hand digging the soil", 

"chiseling ground scrap", "pedestrian". Four alternative approaches for multichannel data fusion were 

compared on stage of TE classification. In particular, MKL, LP-β, LP-B, and WILC-MKL approaches 

were used. The results of using these methods as parts of the C-OTDR system are presented in Table 1. In 

the process of using the method WILC-MKL values of Lipschitz Constants were evaluated numerically 

for each LMC from ensemble . The volumes of training sets were equal for each of various data 

fusion approaches, but those volumes were different for various TE types. 

 
1

1 1

, , , ,1
 1, ...,

m

k k j jj
k mL L

   
 


 


  , ,

0
k k 

  
, ,1

1
m

k kk  
 


 ,k

L


 
T

k
K Z b

 
 

( )
k

Ch   f | ,
k i k
 z

i
 

 f |
k i k
 z  ,Z d

i
 \

i


 f
k


 ,Z d  ,Z d

  ( ),
T

s s s
P x x  w B

si


s


Z 





( | )ZF
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Table 1. The Practical Detection Results. 

 

Method Type of TE Accuracy 
Volume of training 

set 

MKL 

"hand digging the 

soil" 
76% 60 

"chiselling ground 

scrap" 
79% 60 

“pedestrian" 78% 80 

LP-β 

"hand digging the 

soil" 
81% 60 

"chiselling ground 

scrap" 
83% 60 

“pedestrian" 81% 80 

LP-B 

"hand digging the 

soil" 
82% 60 

"chiselling ground 

scrap" 
85% 60 

“pedestrian" 79% 80 

WILC-MKL 

"hand digging the 

soil" 
81% 60 

"chiselling ground 

scrap" 
82% 60 

“pedestrian" 78% 80 

 

 Presented results prove that LP (β and B) are more effective with respect to MKL, and WILC-MKL 

approaches. At the same time, WILC-MKL is more effective compared to MKL, but the LP-B is the best 

approach for a fusion of multichannel data in C-OTDR monitoring systems. It is important: the LP-B 

approach requires more computing resources than the WILC-MKL approach, wherein the accuracies of 

those methods are close. That is why the WILC-MLK approach is preferable from the practical point of 

view. 

 

5. Conclusion 
 This paper describes results of comparison of various multichannel data fusion approaches for TSEV 

classification including MKL, LP-β, LP-B, MPOEC and WILC-MKL. The practical usage of these 

approaches proves better effectiveness of LP-B approach to fusion of multichannel data for classification 

of TSEV type. A brand new approach, WILC-MKL, was suggested for multichannel data fusion. This 

approach is simple to use and performs well as part of a classification subsystem in a C-OTDR 

monitoring system. 
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