
Proceedings of the World Congress on Electrical Engineering and Computer Systems and Science (EECSS 2015)

Barcelona, Spain – July 13 - 14, 2015

Paper No. 304

304-1

A Live Online Lecture System Using Adaptive Streaming
Over HTTP

Lishuang Xu, Jiajun Wang
Shanghai Jiao Tong University, Continuing Education College

1954 Huashan RD, Xuhui District, Shanghai, China

lsxu@sjtu.edu.cn; jjwang@sjtu.edu.cn

Ruimin Shen
Shanghai Jiao Tong University, Department of Computer Science

1954 Huashan RD, Xuhui District, Shanghai, China

rmshen@sjtu.edu.cn

Abstract -This paper describes the design and implementation of a live online lecture system using adaptive

streaming over HTTP. Our adaptive strategy as described in this paper is based on element stream-based HTTP

streaming protocol where each element stream data is transferred as separate segment files via the network.

Therefore the system allows the encoders and receivers to send and receive the element streams adaptively

according to their device constrains and network capabilities. The specific adaptive strategy is proposed as

adaptation logics in the form of flowchart in this paper.

Keywords: http streaming, adaptive streaming, online lecture, streaming media

1. Introduction
Live online lecture systems are widely used in e-Learning, online training and web seminars. Being

able to view online lectures from all kinds of clients including smart phones pose a great challenge to

researchers and developers because of the limited resource and relatively unreliable network of the mobile

clients.

In this paper, we present a live online lecture system using adaptive streaming over HTTP protocol,

which is designed with the constraints of smart phones and mobile networks in mind.

This live online lecture system can contain two concurrent video element streams and also an audio

stream. One video element stream shows what the lecturer is presenting on his/her PC's screen. Which we

will refer to as slideshow element stream afterwards. The other shows video from the camera pointing at

the lecturer, which we will refers to as camera video element stream afterwards. The system is able to

switch among "slideshow element stream and camera video element stream" mode, "slideshow element

stream only" mode, "camera video element stream only" mode, and even "audio only" mode. The system

can change mode according to the resource and network status of the client.

The rest of the paper is organized as following. In section 2,we provide a survey of related works. In

section 3, we describe the reasons we choose element stream-based http streaming protocol in our system.

In section 4, we present the system structure, In section 5, we describe the specific adaptive strategies for

the encode application and receiver application respectively in the form of flowcharts. In section 6 we

share some implementation information. Finally we conclude with thoughts on future research directions.

2. Related Work
There are many online live lectures systems available, such as Cisco's WebEx(Web-1), Ctrix's

Go2Webinar(Web-2), the open source Dimdim(Web-3) and a P2P streaming based PPClass(Weikai et al.,

304-2

2009). However, most of these systems only support PC version and haven't implemented the version

that can run on smart mobile devices.

MLVLS (Carsten et al., 2009) is among the few mobile live lectures system available. It only

provide client for Symbian phones. The major advantage of our system compared to MLVLS is that

we use an enhanced HTTP streaming protocol and adaptive streaming technology base on the

protocol to improve the performance and efficiency on mobile devices.

Cisco recently added iPhone and Android client support to their WebEx solution (Web-4),. But

their iPhone and Android client does not support viewing the camera video element stream. And

there is no information available about the underlying streaming protocol.

PPClass-M (Weikai et al., 2011) is the system adopting HTTP streaming protocol in mobile

clients. But the system is not optimized by adaptive streaming related technology.

3. Element Stream-based HTTP Streaming Protocol
 There are several reasons we adopt http streaming protocol in our online lecture system:

 (1) Existing Internet infrastructures is designed for best-effort delivery of files, while what HTTP

streaming does is to chop the media data into many small segment files and then these files are pulled by

the clients with the HTTP protocol. So HTTP streaming has the advantages of fully exploitation of

existing Internet infrastructures (e.g., caches, proxies, CDNs)(Christopher et al., 2011).

 (2).HTTP streaming is based on the plain old HTTP protocol, which can traverse most NAT and

Firewalls. While According to the design of RTSP protocol, a RTSP client should inform the server about

the separate UDP port addresses the client will use to accept incoming RTP packets. If the client is behind

a NAT or Firewall, such port addresses actually are internal ones and simply cannot be reached from

outside (Weikai et al., 2011).

 (3).HTTP streaming has better tolerance to the interim network problems frequently occurs in mobile

networks. While In RTSP (RTP interleaving mode) and RTMP, each application-layer view session is

bound to a long-lasting TCP connection which would be easily broken by relatively unreliable mobile

networks (Weikai et al., 2011).

 Due to above reasons, media streaming is nowadays more and more provided over-the-top (OTT)

using HTTP streaming technologies. in order to further improve the performance and efficiency of media

applications, Adaptive HTTP Streaming was proposed(Web-5), The basic idea is to chop the media file

into segments which can be encoded at different bitrates or resolutions. The segments are provided on a

Web server and can be downloaded through standard HTTP GET requests. The adaptation to the bitrate,

resolution, etc. is done on the client side for each segment, e.g., the client can switch to a higher bitrates –

if bandwidth permits – on a per segment basis. This makes the download behaviour of the client adaptive

and dynamic to fit best for its given bandwidth. There are also other proprietary solutions from different

companies like Microsoft’s Smooth Streaming [Web-6], Adobe’s Dynamic HTTP Streaming(Web-7) and

Apple’s HTTP Live Streaming (Web-8) which more or less adopt the same approach.

 But the above adaptive approaches are not suitable for our system because our system is different

from traditional multimedia systems in that our system needs to support two different video element

streams to be transferred while traditional multimedia systems only support one video element stream to

be transferred. Therefore we proposed an enhanced HTTP-streaming based streaming protocol called

element stream-based HTTP streaming protocol in that media stream is decomposed into different

element streams and every kind of element stream produces its own small segment files separately.

 As figure 1 shows, we define stream data each short period of time the system produce as fragment.

Each fragment includes different segment files for different element streams. for example, Fragment 1

contains ten seconds stream data which is composed of segment file for audio element stream, segment

file for capture video element stream and segment file for slideshow video element stream.

304-3

Fig. 1. The Relationship between fragment and segment files

4. System Structure
 The system structure is illustrated in Fig 2. The encoder Application runs on the lecturer's PC. it

sends element streams to the Mux server adaptively according to the needs and bandwidth permit. as

figure 2 shows, the solid arrow in the picture means that the transfer of audio element stream is obligatory

in the system, while the dashed arrow means that the transfer of slideshow element stream and the camera

video element stream is optional.

 The Mux Server is responsible for fragmenting the uploaded element streams into segment files. The

Mux Server is also be responsible for generating an index file where the URLs of segment files for the

latest N fragment durations are listed together with their timing information. This file is updated at the

end of each fragmentation duration. Web server serves the segment files and the index file.

Fig. 2. The system structure

Fragment 1

Segment file for

Audio element stream

Segment file for capture

video element stream

Segment file for slideshow

video element stream

….

…….

…….

…….

Fragment N

Segment file for

Audio element stream

Segment file for capture

video element stream

Segment file for slideshow

video element stream

Time

encoder

Audio element

stream

Slideshow video

Element stream

Capture video

element stream mux

server

Receiver

(media

player)
Audio fragment

 files

Fragment Index

 file

web

server Audio segment

 files

Slideshow video

segment files

Capture video

segment files

Fragment Index

 file

CDN
Existing WEB

CDN

Infrastructure

Capture video

segment files

Slideshow video

segment files

304-4

 We leveraged the Web CDN service provided by ChinaCache to do client acceleration and load

balancing.

 The receiver (viewer) application runs on viewer's pc or smart phones. It can pull subset of segment

files from web server. The specific adaptive strategy of the encode application and the receiver

application goes to the next section of our paper.

5. Adaptive Streaming Over HTTP
 Figure 3 shows the flowchart of the specific adaptive streaming strategy over HTTP for the encoder

application. We firstly define priority value for each element stream (e.g. 0 for audio element stream. 1

for slideshow element stream, 2 for camera video element stream.). The smaller the priority value, the

more important the element stream is. Lecturers should select element streams to be sent before the

encoder starts. The selected element streams are added to the "sending list" which is a set for saving

which element streams are to be sent to the Mux server.

Fig. 3. The adaptive strategy for the encoder application

Start the encoder and select element

streams to be sent to the sending list

For every fragmentation duration

Upload

bandwidth

is enough

All the selected

element streams

are in the sending

list

Yes

Yes

No

No

Remove one of the

element streams with

lowest priority from the

sending list

Add one of removed element

streams with highest priority

to the sending list

Size of the

sending list

> 0
Yes

No Send the element streams in

the sending list to the Mux

server Wait till the next fragment

duration arrives

304-5

 After the encoder application starts. for every fragment duration, the encoder checks it's upload

bandwidth, if the bandwidth is enough, it will further check whether all the selected element streams are

in the sending list, if so, all the selected element streams will be sent to the Mux server, otherwise the

system will add one of the removed element streams with highest priority to the sending list and then all

the element streams in the sending list will be sent to the Mux server.

 If the bandwidth is not enough, the system will remove one of the element streams with the lowest

priority from the sending list, and then further check whether size of the sending list is greater than zero.

If so all the element streams in the sending list will be sent to the Mux server. Otherwise there are no

element streams in the sending list and the application will wait till the next fragment duration arrives.

 Figure 4 shows the flowchart of the specific adaptive streaming strategy over HTTP for the receiver

application. Viewers should select element streams to be received after the receiver starts. The selected

element streams are added to the receiving list (RL) and RL is assigned to the current receiving list (CRL)

which is a set for saving which element streams are to be received. after that for every fragmentation

duration the receiver pulls fragment index file form the web server, through parsing the index file we can

retrieve the so-called "produced list" (PL) which is the information about which element streams are

produced by the Mux server at current fragment duration. At this step we set CRL = CRL ∩PL, which

means the element streams which to be received is the intersection of CRL and PL.

 Later on the receiver checks it's download bandwidth, if the bandwidth is enough, it will further

check whether CRL equals to the intersection of RL and PL. if so, all the segment files related to the

selected element streams in CRL will be pulled from the web server by the receiver, otherwise the system

will add the element stream from (RL∩PL)-CRL with the highest priority to the CRL and then all the

segment files related to the selected element streams in CRL will be pulled from the web server by the

receiver.

If the download bandwidth is not enough. the receiver will remove the element stream with the

lowest priority from the CRL and check whether size of the CRL is greater than zero, if so all the segment

files related to the selected element streams in CRL will be pulled from the web server by the receiver.

Otherwise there is no element streams to be pulled and the application will wait till the next fragment

duration arrives.

6. Implementation
Till now the encoder application is implemented on Windows platforms. It consists of media capture

module, media encoder module, adaptive streaming module and UI module. The UI module is implement

with HTML/JS/CSS. All other modules are implemented in C++. The camera video element stream is

encoded with H.264. The audio element stream is encoded with Speex. The slideshow element stream is

encoded with SJSC+, an special type of video codec designed by us, which is optimized for compressing

the image sequences captured from the computer screen (Chenping et al., 2010).

The Mux server application is implemented in python using the Twisted library. The server

application can run on both Windows and Linux platform.

The receiver (viewer) application is implemented for Android-based smart phones. It consists of the

adaptive HTTP streaming module, media decoder module, rendering module and UI module. The decoder

module is implemented with C++ and invoked by other modules via JNI interface. All other modules are

implemented in Java.

Figure 5 contains a screenshot of the receiver's application on android phone. We used a semi-3D

theme for placing the two video windows in our "slideshow and camera" view mode. In the theme, the

slideshow element stream window are rotated a small degree around Z-axis to give a sense of depth in

space.

When the download bandwidth is not enough for the receiver to download all the three element

streams segment files from the server, according to the adaptive strategy, the receiver will try not to pull

the least important segment files from the server. As figure 6 shows, the application doesn't show the

camera video element stream on the right window.

304-6

Fig. 4. The adaptive strategy for the receiver application.

Fig. 5. "Slideshow camera video" view mode.

for every fragmentation duration Download the fragment

index file and update the produced list(PL) and set

current receiving list(CRL) CRL=CRL ∩PL

Download

bandwidth

is enough

CRL=RL ∩PL

Yes

Yes

No

No

Remove the element

stream with the lowest

priority from the CRL

Add the element stream ∈(RL

∩PL-CRL) with the highest

priority to the CRL

Size of the

CRL > 0

Yes
No

Receive the element

streams in CRL

from the web server

select element streams to be received to

 the receiving list(RL) and set current receiving list(CRL) CRL=RL

Wait till the next fragment

duration arrives

304-7

When viewer taps on the slideshow windows on figure 5 the application will switch to slideshow

view mode as figure 7 shows. At this time there is no need to pull camera video's data from the server.

Obviously not pulling camera video's segment files will improve the performance of the application and

also save device's resources.

Fig. 6. "Slideshow camera video" view mode with camera video element stream not pulled due to bandwidth limit.

Figure 7. Slideshow view mode.

7. Conclusion
Our System is successfully deployed as a typical application for students at the Continuing Education

College of Shanghai Jiao Tong University. By using the adaptive method described in the paper, users can

get more comfortable viewing experience especially in the unstable network condition. We conducted a

preliminary user study with our system. About 10 persons outside of our team were invited to use

Android client to watch a typical live online lecture at the Continuing Education College of Shanghai Jiao

Tong University. Then they are asked about questions related to the design of the user interface, the

clarity and the smoothness of the lecture video and audio, etc. Most of the person gives positive response

to these questions.

304-8

8. Future Directions
Our encoder application can only run on Windows platform before Windows 8. We are planning

to port to Windows 8 and pad devices.

We are also planning to port our receiver implementation to iPhone and iPad.

References
Ulrich, C., Shen, R., Tong, R., & Tan, X. (2009). A Mobile Live Video Learning System for Large-Scale

Learning – System Design and Evaluation. IEEE Transactions on Learning Technologies, 3(1), 6-17.

Lu, C., Xie, W., & Zhang, Z. (2010). An Enhanced Screen Codec for Live Lecture Broadcasting.

International Conference Audio, Language and Broadcast.

Müller, C., & Timmerer, C. A VLC Media Player Plugin Enabling Dynamic Adaptive Streaming over

HTTP. Proceedings of the 19th ACM International Conference on Multimedia, 723-726.

Xie, W., Zhang, Z., Lu, C., Wang, Y., & Shen, R. (2009). PPClass – A Classroom Lecture Broadcast

Platform Based on P2P Streaming Technology. Proceedings of International Symposium on

Computing, Communication and Control, Singapore, 482-488.

Xie, W., Lu, C., Zhang, Z., Lin, Y., & Shen, R. (2011). PPClass-M — A Live Online Lecture System

Optimized for Mobile Access. IEEE International Symposium on Broadband Multimedia Systems

and Broadcast.

Web sites:

Web-1: http://www.webex.com, consulted 3 March 2015

Web-2: http://www.gotomeeting.com/online/webinar, consulted 3 March 2015

Web-3: http://en.wikipedia.org/wiki/Dimdim, consulted 3 March 2015

Web-4: http://www.webex.com/products/web-conferencing/mobile.html, consulted 3 March 2015

Web-5: http://www.3gpp.org/DynaReport/26234.html, consulted 4 March 2015

Web-6: http://www.iis.net/downloads/microsoft/smooth-streaming, consulted 4 March 2015

Web-7: http://www.adobe.com/products/hds-dynamic-streaming.html, consulted 4 March 2015

Web-8: http://tools.ietf.org/html/draft-pantos-http-live-streaming-06, consulted 4 March 2015

