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Abstract -This paper presents a fault diagnosis algorithm for driving motor of In-wheel independent drive electric 

vehicle using vehicle dynamic analysis. The driving motor fault is detected and isolated based on the residuals. The 

residuals are provided with the wheel dynamics. The wheel dynamics are composed of a motor driving torque, 

wheel speed and longitudinal force. The longitudinal force estimated by analyse a planar two track model and a 

nonlinear simple tire model. The proposed fault diagnosis algorithm is verified by CarSim® and Matlab/Simulink® 

cosimulation. 
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1. Introduction 
Eco friendly cars, such as fuel cell vehicles and electric vehicles, have been actively studied 

worldwide in the recent years to solve environmental and energy problems. Out of these, In-wheel 

independent drive electric vehicle mounting the drive motor in the each wheel has attracted attention for 

reasons such as improving system efficiency and performance of vehicle stability control as shown by 

Yoichi et al. (1998, 2004). However, the drive motor mounted in the each wheel will be exposed to harsh 

environments such as physical shock or rapid temperature and humidity changes. This may have resulted 

in a frequent failure. For the safety of the vehicle, fault diagnosis of the drive motor are important issues. 

There are two kinds of solutions in fault diagnosis. The first solution is hardware redundancy which 

adds another actuators or sensor as an extra hard ware. It is a physically simple method but additional cost 

is required. The second one is analytical redundancy which used mathematical model. In the car, the 

analytical redundancy is commonly used because this does not need any additional costs. This study 

proposes a fault diagnosis using the analytical redundancy. 

 There are numerous study results about fault diagnosis for the drive motor of the vehicle. The 

sensorless control algorithm is used for the rotor angle estimation to detect a fault of the motor position 

sensors, and if the difference between the measured angle and the estimated one is larger than a threshold 

value, then the control algorithm should be reconfigured to the sensorless control as shown by Benbouzid 

et al. (2007) and Demba et al. (2004). There was a study of the improvement of reliability through the 

optimal IPM motor design of the proper number of slots, winding distribution, and increasing number of 

phases as shown by Leila et al. (2007). Other studies focused on the faults of power semiconductors of an 

inverter and stator windings of a motor as shown by Ahmed et al. (1993) and Brian et al. (2002). Another 
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studies are current sensor fault diagnosis through the additional circuit as shown by Yu-seok et al. (2005) 

and the current frequency analysis as shown by Bilal et al. (2009) when the vehicle is stop. 

 So most of fault diagnosis of the drive motor have been mainly performed at the low-level system not 

the vehicle dynamics but the subcomponent such as motor and inverter. Fault diagnosis of the low-level 

system is suitable for the sensor fault, but is difficult for actuator fault since it is difficult to know load 

torque transmitted from the outside of the vehicle. Moreover, fault diagnosis of the subcomponent is 

sensitive to noise and system uncertainties can be a fault alarm as shown by Xiaowen et al. (1994) and B. 

Song et al. (2005). So there is need of additional fault diagnosis of the high-level to enhance the 

robustness as shown by Soontae et al. (2008). This paper presents a fault diagnosis algorithm of the high-

level for driving motor of In-wheel independent drive electric vehicle using vehicle dynamic analysis. 

 The driving motor fault is detected and isolated based on the residuals. The residuals are provided 

with the wheel dynamics. The wheel dynamics are composed of a motor driving torque, wheel speed and 

longitudinal force. The longitudinal force estimated by analyse a planar two track model and a nonlinear 

simple tire model. The proposed fault diagnosis algorithm is verified by CarSim® and Matlab/Simulink® 

cosimulation. 

 

Nomenclature 

m   Vehicle mass 

sm   Vehicle sprung mass 

l
rfl ,
  Wheel base 

rfl ,
  Distance between mass center and axle 

sh   Sprung mass height 

rft ,
  Vehicle tread 

xa   Longitudinal acceleration 

ya   Lateral acceleration 

fk   Lateral weight-shift distribution on the front wheel 

rk   Lateral weight-shift distribution on the rear wheel 

 

Subscripts 

FLfl,  Front left 

FRfr,  Front right 

RLrl,  Rear left 

RRrr,  Rear right 

 

2. Vehicle Model 
 A plane two track model is considered to represent the each wheel longitudinal and lateral forces for 

fault diagnosis of each wheel drive motor. 

 

2. 1. Plane Two Track Model 
 Fig. 1. Shows the plane two track model including each wheel longitudinal and lateral forces. The 

longitudinal, lateral and yaw dynamics model of the vehicle is described as follows: 
 

      
xrrxrlfyfryflfxfrxflyx FFFFFF

m
vv   sincos

1
  (1) 
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      yrryrlfyfryflfxfrxflxy FFFFFF
m

vv   cossin
1

  (2) 

 

      
      xrrxrlrfxfrxflfyfryflf

yrryrlrfxfrxflfyfryflfz

FFwFFFFw

FFlFFFFlI









cossin

sincos
 (3) 

 

 
Fig. 1. Plane two track model  

 

2. 2. Nonlinear Simple Tire Model 
The nonlinear simple tire model is used for calculating the longitudinal and lateral tire forces. This 

model is easy to tuning and replicate similar to the actual in linear and nonlinear range. The nonlinear 

simple tire model is implemented using the hyperbolic tangent, and the equations are as follow. 

 

  xzxx FkF tanh  (4) 

 

  yzxx FkF tanh  (5) 

 

where 
yxk ,

, 
yx,  are the tuning factors,   is the tire slip ratio, and   is the tire slip angle. 

The tire slip ratio and the tire slip angle equations are as follow. 
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Considering the effect of weigh shift due to both roll and pitch, equations of vertical forces can be 

obtained by the following equations assuming that vehicle longitudinal and lateral accelerations are 

measured as shown by Ossama et al. (2008). 

xrlF xrrF

xv

yv



fl

rl

f f

f

r

yflF yfrF

xflF
xfrF

yrlF yrrF

ft

rtrt

ft
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 (8) 

 

Fig. 2. Shows a comparison of a simple tire model with the Carsim tire model. 

 

 
 

Fig. 2. Comparison of a simple tire model with the Carsim tire model 

 

2. 3. Wheel Dynamics 
 The wheel dynamics can be written as follows by using the each wheel speed and the motor driving 

torque: 

 

  rrrlfrfliMFrT
I

yrrixieffmiwi ,,,,
1




  (9) 

 

 where w  is the wheel speed, mT  is the motor driving torque, 
yrrM  is the rolling resistance, 

effr  is 

the effective rolling radius, and I  is the tire moment of inertia. 

 
3. Fault Diagnosis Algorithm 
 This study derives the correlation between each sensor and Residual by analysis how the fault of the 

drive motor affect the entire vehicle. 

 

3. 1. Residual 
 The wheel dynamic can be expressed as the residual. In the absence of the drive motor fault, the 

residual is near ‘0’. The residual equations are as follows. 

 

  rrrlfrfliMFrT
I

r yrrixieffmii ,,,,
1

0: 


 (10) 

 

 yrriM  can be ignored by an adaptive residual threshold under the assumption that small when the 

motor is driven. 
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3. 2. Estimation Of The Longitudinal Forces 
From Eq. (10), it is clear that estimation of the longitudinal forces is essential to be used in the fault 

diagnosis. The longitudinal forces calculation using Eq. (4) is not accurate since the tuning factor xk  is 

different for each road surface. Therefore a model observer is used for the longitudinal forces estimation 

process. This observer used Eq. (1) and Eq. (4) under the assumption that the sign of the longitudinal slips 

of the each wheel is the same and the longitudinal forces is assumed to be larger than the lateral forces. 

The longitudinal dynamics equation ignoring the lateral force is as follows. 

 

     yxxrrxrlfxfrxfltotalx vvmFFFFF   cos,
 (11) 

 

From Eq. (4) and (11), 
totalxF ,

 is described by the following equation. 

 

 
   
    













rrxzrrrlxzrl

ffrxzfrfflxzfl

xyx
FF

FF
kvvm






tanhtanh

costanhcostanh
   (12) 

 

From the above equations, the tuning factor 𝑘𝑥 can be reached as follows. 

 

 
   
    
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x

FF

FF

vvm
k







tanhtanh

costanhcostanh


 (13) 

 

The longitudinal forces can be obtained more accurate by Eq. (4) and (13), and then the robustness of 

the fault diagnosis is improved.  

 

  rrrlfrfliFkF ixzixxi ,,,,tanh    (14) 

 

3. 3. Analysis Of The Correlation Between Each Sensor And Residual 
This study is analysed the correlation between each sensor and Residual in order to verify the 

possibility of the fault isolation.  

From Eq. (6), (13) and (14), these equations can be simplified to obtain the redundancy relation. 

 

  rrrlfrfliFvvcFc wzyxfxi ,,,,,,,,,: 11     (15) 

 

In Eq. (15), 
yv  is calculated by Eq. (2) and (5), and zF  is calculated by Eq. (8). Similarly these 

equations can be simplified to obtain the redundancy relations. 

 

 zxxfy FFvcvc ,,,,: 22    (16) 

 

 zyxfy FvvcFc ,,,,: 33    (17) 

 

 yxz aacFc ,: 44   (18) 

 

Finally, by using the above information, the residuals are described by the following equation. 
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    rrrlfrflivaaTrFTrr wxfyxmiiwximiii ,,,,,,,,,,,,0:     (19) 

 

From the above residuals, the fault table can be expressed as follows. 

 
Table. 1. Fault table of residual 

 

 
xa  ya  

f    
xv  w  mflT  

mfrT  
mrlT  mrrT  

1r  X X X X X X X    

2r  X X X X X X  X   

3r  X X X X X X   X  

4r  X X X X X X    X 

 

 Table. 1. shows that it is possible to fault isolation of the drive motors of the wheels when the other 

sensor information is assumed to be normal. 

 

3. 4. Adaptive Threshold 
 Once the residual is generated and evaluated, it should be then compared with the limit value which 

is called the threshold. If the residual deviates from the threshold, a fault is declared as detected. 

 

Thr                     (20) 

 

where r  is the residual value, and Th  is the threshold value. 

 In this paper, the fault diagnosis algorithm uses vehicle models which do not fully agree with real 

processes due to model uncertainties. The generated residual then deviates from zero even without fault. 

If the threshold is not well set, it may generate false alarms through normal fluctuations of the variable. It 

is obvious that setting Th  too high will reduce the sensitivity to the faults and setting Th too low will 

increase the false alarm rate. 

 Usually, Th  is set empirically considering the maximum influence of the model uncertainties. In 

transient state, especially, these model uncertainties are more frequently occurred. Therefore, adaptive 

threshold is introduced to avoid these problems. The deviation of the residual depends on the amplitude 

and frequencies of the input excitation. The adaptive threshold method uses its variation. It is used that a 

high pass filter (HPF) for enlarging the threshold, on which the deviation and the amplitude of the input 

have an effect, and a low pass filter (LPF) for smoothing the threshold as Fig. 3. The time constants 1T  

and 
2T  are selected according to the dominating time constant of the system process. 21 /TT  depends on 

the model uncertainty of the dynamics as shown by R. Isermann et al. (2008). 

 

 
Fig. 3. Structure of the adaptive threshold generator 
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4. Simulation Results 
The simulation was done to verify the proposed fault diagnosis algorithm. The simulation 

environment consists of the fault diagnosis algorithm and the vehicle dynamics simulation tool. The fault 

diagnosis algorithm were programmed by Matlab/Simulink®. A vehicle dynamics simulation package, 

CarSim®, was used to simulate vehicle dynamics. 

The simulation condition is the straight driving with constant throttle (0.2, 0.5) at an initial vehicle 

speed 20km/h. The fault signal are applied from 5 to 7 seconds, and this fault signal was implemented the 

right rear (RR) drive motor torque 30% reduction. 

 
Fig. 4. Simulation result (Initial speed 20km/h, throttle=0.2 acceleration)  

 

 
Fig. 5. Simulation result (Initial speed 20km/h, throttle=0.5 acceleration)  

 

Fig. 3 and Fig. 4 show that the longitudinal force of each wheel are estimated very well. In addition 

the input signals of the vehicle (longitudinal slip) influence on the threshold adaptively at the start point. 

The results of the residuals are also shown; zero value represents fault free situation, and other values 

over the threshold represent faulty situation. In these results, the drive motor fault each wheel are detected 

and isolated. 

 

5. Conclusion 
This paper presents a fault diagnosis algorithm of the high-level for driving motor of In-wheel 

independent drive electric vehicle using vehicle dynamic analysis. In the future, this research can be 

expand into the integrated fault diagnosis research to improve the stability and reliability of the control by 

integrating with the low-level fault detection. 
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